Haihao (Sean) Lu’s research interests are in extending the computational and mathematical boundaries of methods for solving the large-scale optimization problems that arise in data science, machine learning, and operations research. In particular, he is interested in (i) theory of convex and non-convex optimization motivated by statistical/machine learning problems; (ii) data-driven decision making with applications in advertisement allocation and machine scheduling; (iii) huge-scaling linear programming solving in the distributed setting (with applications at Google). His work has been published in journals including Mathematical Programming and SIAM Journal on Optimization.

Lu obtained his Ph.D in Operations Research and Applied Mathematics at MIT in 2019, and his B.S. in Mathematics at Shanghai Jiao Tong University in 2014. Prior to joining Booth, he was a visiting researcher at Google research large-scale optimization team, where he primarily worked on designing and implementing a huge-scale linear programming solver.

Academic Areas

  • Operations Management

Selected Publications

2022 - 2023 Course Schedule

Number Title Quarter
32100 Data Analysis with R and Python 2023 (Spring)
36919 Modern Large-Scale Optimization: Theory & Computation 2023 (Spring)