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Abstract

This paper develops the inferential theory for latent factor models estimated from large

dimensional panel data with missing observations. We estimate a latent factor model by applying

principal component analysis to an adjusted covariance matrix estimated from partially observed

panel data. We derive the asymptotic distribution for the estimated factors, loadings and the

imputed values under a general approximate factor model. The key application is to estimate

counterfactual outcomes in causal inference from panel data. The unobserved control group

is modeled as missing values, which are inferred from the latent factor model. The inferential

theory for the imputed values allows us to test for individual treatment effects at any time. We

apply our method to portfolio investment strategies and find that around 14% of their average

returns are significantly reduced by the academic publication of these strategies.
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1 Introduction

Large dimensional panel data with missing entries are prevalent. In causal panel data, the main

focus is to estimate the unobserved potential outcomes. In financial data, stock returns are missing

before a company is listed, after its bankruptcy or because of illiquidity. In macroeconomic datasets,

panel data might be collected at different frequencies or not for all geographical locations resulting

in missing entries. In the famous Netflix challenge, a majority of users’ ratings for films are

missing. Estimating missing entries in panel data is a fundamental problem with applications in

social science, statistics, and computer science.

This paper presents an inferential theory for latent factor models estimated from large dimen-

sional panel data with missing observations. We propose a novel approach to estimate a latent factor

model by applying principal component analysis (PCA) to an adjusted covariance matrix, which

is estimated from the partially observed panel data. We derive the asymptotic normal distribution

for the estimated factors, loadings, and imputed values.

The key application is to estimate counterfactual outcomes for causal inference. The unobserved

control group is modeled as missing values, which are inferred from the latent factor model. The

inferential theory for the imputed values allows us to test for individual treatment effects at a

particular time. This granular test is of practical importance because we learn not only for whom

but also when the treatment is effective which allows us to optimally allocate treatments to units

over time.

1.1 Main Contribution

Our work contributes to three distinct fields: large dimensional factor modeling, matrix completion

and causal inference. First, we extend the inferential theory of latent factors to large dimensional

data with general patterns in missing entries. Second, matrix completion methods impute missing

entries under the assumption of a low-rank structure which is corrupted with noise. We provide

confidence intervals for the imputed values. Lastly, the key question in causal inference is the

estimation of counter-factual outcomes, i.e. what would have been the outcome if a unit had not

been treated or if a unit had been treated. The unobserved counter-factual outcome can naturally

be formulated as a missing observation problem. We are the first to provide a test for the point-wise
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treatment effect that can be heterogeneous and time dependent under general adoption patterns

where the units can be affected by unobserved factors.

The inferential theory for latent factor models with missing data is important for a number of

reasons. First, we show how to consistently impute the missing observations in a large dimensional

data set, which can then be used as an input for other applications. Second, we provide confidence

intervals for the imputed values, which serve as a decision criterion if the imputed data should be

used. Third, we provide the conditions under which missing values can be inferred. Fourth, the

distribution of the missing observations can actually be the object of interest itself. For example,

the imputed values serve as the synthetic control for which we need an asymptotic distribution

theory. The inferential theory is key for deriving a test statistic for a treatment effect.

Our method is very simple to adopt and but works under general assumptions. Conventional

factor estimation in large dimensional panel data applies PCA to a sample covariance matrix, which

requires a fully observed balanced panel. To tackle the missing entries in the panel, our estimator

replaces them with zeros and re-weights the observed entries. The next step is to simply apply

PCA to the covariance matrix of this transformed panel. The missing entries are estimated by the

common components of the factor model. We only need to make the standard assumptions of an

approximate factor model.

Our framework allows for very general patterns of missing observations. The patterns are

modeled as general functions of the unobserved loadings and unit specific features. In this case,

the re-weighting of the observed entries is based on a propensity score for which we provide a

consistent estimator. Allowing the missing pattern to be a function of unit-specific characteristics

is relevant for the causal inference application as the treatment of units is typically not random.

Furthermore, we cover the common scenario of a simultaneous and staggered treatment adoption

where the treatment cannot be removed once implemented. Our framework also allows for the

common case studied in the matrix completion literature1 that the data is missing independently

of the underlying factor model. In this case, the re-weighting of the observed entries is simply based

on the proportion of missing to observed entries.

Deriving the inferential theory under these general conditions is a challenging problem. The

missing observations have a complex effect on the asymptotic covariance matrix of the imputed

1See (Candès and Recht, 2009; Negahban and Wainwright, 2012).
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entries. In particular, the asymptotic variance has an additional variance correction term compared

with the fully observed panel. This term results in a larger asymptotic variance than in the fully

observed case.

In our empirical analysis, we study the effect of academic publications on the return of anomaly

portfolios. There is an ongoing debate in asset pricing on whether academic publications result in

the disappearance, reversion or attenuation of anomalies in equity returns. An anomaly describes

a pattern in average returns that cannot be explained by a benchmark asset pricing model as for

example the important Capital Asset Pricing Model (CAPM). Schwert (2003), McLean and Pontiff

(2016) and Chen and Zimmermann (2018) suggest that the return of anomalies are reduced after

their publication, mainly because investors become aware of the effect and correct the mispricing.

Our novel methodology allows us to test if the average return or pricing error of an anomaly portfolio

is significantly reduced by its publication. At a 5% confidence level, merely 14% of the anomalies

are significantly reduced by publication. Importantly, a naive estimation of the publication effect

which simply compares time-series means before or after the publication date is more likely to find

an effect as the sample mean returns are in general lower in the latter part of the data set. Our

approach correctly accounts for time effects and the uncertainty in the estimation showing that the

risk premium of most “classical” anomalies have not been affected by publication.

1.2 Related Literature

We show the inferential theory for large dimensional factor models from incomplete panel data

with general missing patterns. This paper works under the framework of an approximate factor

structure where both the cross-section dimension and time-series dimension are large. When the

data is fully observed, Bai and Ng (2002) show that the factor model can be estimated with PCA

applied to the covariance matrix of the data. Bai (2003) derives the consistency and asymptotic

normality of the estimated factors, loadings and common components, which are the product of

factors and loadings. Bai (2009) extends the inferential theory to a model with observed covariates

and latent factors.2 When a panel has missing entries, a common approach is to estimate the factor

2A current active research topic is to extend the constant loading factor model to a time-varying loading model
by using a projection in the cross-section dimension (Fan et al., 2016; Kelly et al., 2018), a local window or high
frequency approach (Pelger, 2019; Aı̈t-Sahalia and Xiu, 2018) or a kernel projection in the time dimension (Pelger
and Xiong, 2018). However, the current literature relies on a fully observed panel data set of the projected data.
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model from a subset of the data for which a balanced panel is available. This approach has two

drawbacks: First, it is in general less efficient as our approach makes use of all the data. Second, it

can lead to a biased estimate if the data is not missing at random. For example, a complete panel

of stock returns suffers from survivorship bias as only companies can be included that did not go

bankrupt.

The inferential theory of large dimensional factor models with missing observations is an active

area of research. Our paper is most closely related to the recent papers by Su et al. (2019),

Bai and Ng (2019) and Chen et al. (2019). The papers differ in the algorithms to impute the

missing observations, the generality of the missing patterns and the proportion of required observed

entries relative to the missing entries. There is a trade-off in terms of generality of the model and

required observations, where our work allows the most general pattern in missing observations

with a general approximate factor structure at the cost of observing entries at the same rate as

missing entries. Importantly, in contrast to the other papers our framework allows the missing

pattern to depend on unit specific features and to test for an individual treatment effect at any

time for any cross-section unit or a weighted treatment effect. This is exactly what we need for

the main application in causal inference. Su et al. (2019) estimate the latent factor model with

the expectation–maximization (EM) algorithm under the assumption of randomly missing values.3

Independently and simultaneously, Bai and Ng (2019) provide the inferential theory for the factor-

based imputed values based on the innovative idea of shuffling rows and columns such that there

exist fully observed TALL and WIDE blocks for estimating the factor model.4 Chen et al. (2019)

approach the problem from a matrix completion perspective which can also be mapped into a

factor model framework. They solve a nuclear norm regularized optimization problem to estimate

3Stock and Watson (2002b); Bańbura and Modugno (2014); Negahban and Wainwright (2012) propose to use
EM algorithms to estimate the factor model from the panel data with missing observations. Giannone et al. (2008);
Doz et al. (2011); Jungbacker et al. (2011); Stock and Watson (2016) propose to use the state space framework and
Kalman Filtering to estimate the factor model with missing observations. Gagliardini et al. (2019) propose a simple
diagnostic criterion for approximate factor structure in large (unbalanced) panel datasets. Other work to impute
missing values using EM algorithms includes Rubin (1976); Dempster et al. (1977); Meng and Rubin (1993) that
study the problem under a different framework, i.e., on cross-sectional data (but not panel data).

4Our paper differs from Bai and Ng (2019) in three aspects: 1. We allow the observational pattern to depend on
the loadings or observed covariates; 2. We provide general tests for treatment effects, such as an individual treatment
effect at any time or a weighted treatment effect. 3. Their re-shuffling of rows and columns imposes some restrictions
on the missing patterns and might result in using less observations for estimating missing entries. Our first point
requires a re-weighting of the observed entries by a generalized propensity score which we assume to be positive.
The second point, requires the number of observed and missing entries to grow at a similar rate. The third point
complicates our derivations of the inferential theory as we have to deal with many local rotation matrices of the latent
factors.
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the missing entries and develop an inferential theory under the assumption of random sampling

and i.i.d. noise. The last two papers require less observed entries than our framework, which is

relevant for problems such as the Netflix challenge, but have restrictive assumptions on missing

patterns or the factor model, which limits the application to causal inference in the social science,

which is our main objective.

Our imputed values are point-wise consistent and have asymptotic normal distributions which

is relevant for the matrix completion literature that studies a similar problem. Both our paper

and the matrix completion literature assume a low-rank structure in the panel data. In the matrix

completion literature, the most popular method is to estimate the low-rank matrix from a convex

optimization problem.5 The main results in the matrix completion literature are upper bounds for

the mean-squared estimation error for the estimated matrix. However, point-wise consistency does

not hold in general because the typically used nuclear norm regularization results in a bias in the

estimated matrix. In their path-breaking work, Chen et al. (2019) propose de-biased estimators

and provide an inferential theory under the assumption of i.i.d. sampling and i.i.d. noise. Our

paper contributes to the matrix completion literature by allowing general observation patterns and

dependent error structures, which is particularly relevant for applications in the social science.

Our paper allows for heterogeneous and time dependent treatment effects of an intervention

and general intervention adoption patterns compared with the synthetic control methods in causal

inference. Furthermore, our paper provides a flexible test for the treatment effects. In comparative

case studies, a key question is to estimate the counter-factual outcomes for the treated units.

A valid control unit is “close” to the treatment unit except for the treatment effect. Typically

synthetic controls are weighted averages of untreated units where the weights depend on unit

specific features. A popular model assumption is that the potential outcome is linear in observed

covariates and unobserved common factors (Abadie et al., 2010, 2015). Abadie et al. (2010, 2015),

Hsiao et al. (2012), Doudchenko and Imbens (2016), Li and Bell (2017), Li (2017), Carvalho et al.

(2018), and Masini and Medeiros (2018) propose to match each treated unit by weighted averages

of all control units using the pretreatment observations. Li and Bell (2017) and Li (2017) further

5The conventional optimization problem is to minimize the mean squared error between the observations and the
corresponding entries in the estimated matrix while regularizing the nuclear norm of the estimated matrix (Mazumder
et al., 2010; Negahban and Wainwright, 2011, 2012). The nuclear norm of a matrix is similar to the `1 norm of a
vector. The optimal solution has a lower rank if the nuclear norm has more weight in the objective function.
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show the inferential theory for the average treatment effect over time. Li and Bell (2017) propose

using the LASSO method to select control units and Carvalho et al. (2018) show the inferential

theory for the LASSO method. Masini and Medeiros (2018) focus on the high-dimensional, non-

stationary data. These methods rely on the assumption that there is only one treated unit and

the treatment effects are either constant or stationary. Another method is to regress the post-

treatment outcomes for the control units on the pre-treatment outcomes and covariates and use the

coefficients to predict the counter-factual outcome for the treated/control units. Athey et al. (2018)

proposes to use matrix completion methods to complete the control panel data and allow for more

general treatment adoption patterns: multiple treated units and staggered treatment adoption.

However, the point-wise guarantee for the imputed values is not provided in Athey et al. (2018).

In this paper, we do not only allow for general treatment adoption patterns, but also provide the

point-wise inferential theory for the imputed counter-factual outcomes. Furthermore, we can test

for treatment effects even if they are heterogeneous and time dependent. Our approach does not

require a priori knowledge on which covariates describe if a treated and control units are a good

match. Instead, our latent loadings capture all unit-specific information in a data-driven way.

The synthetic control that we impute is a weighted average of the untreated units that takes all

unit-specific information into account.

The rest of the paper is organized as follows. Section 2 introduces the model and provides

the estimator for factors, loadings, and common components. Section 3 states the necessary as-

sumptions for our theoretical results. Section 4 shows the asymptotic results and the tests for the

point-wise treatment effect. Section 5 provides a feasible estimator for the propensity score which

is needed as a weight to construct our estimator. Section 6 demonstrates simulation results. In our

empirical analysis in section 7 we study the effect of academic publications on investment strategies.

Section 8 concludes the paper. Additional results and the proofs are collected in the Appendix.

2 Model and Estimation

2.1 Model

Assume we partially observe a panel data set with T time periods and N cross-sectional units.

This panel data has a factor structure with r common factors. Denote Xit as the cross-sectional
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observation i at time t, Ft ∈ Rr×1 as the latent factors at time t, λi ∈ Rr×1 as the factor loadings

of the cross-sectional unit i and eit as the idiosyncratic error:

Xit = λ>i Ft + eit i = 1, 2, · · · , N and t = 1, 2, · · · , T

or in vector notation,

Xt︸︷︷︸
N×1

= Λ︸︷︷︸
N×r

Ft︸︷︷︸
r×1

+ et︸︷︷︸
N×1

for t = 1, 2, · · · , T .

In an asymptotic setup where N and T are both large, we randomly observe some entries in

X = [X1, X2, · · · , XT ] ∈ RN×T . Let Wit ∈ {0, 1} be the indicator variable, where Wit = 1 indicates

that the (i, t)-th entry is observed and Wit = 0 otherwise. In this paper we will estimate the latent

factors F and loadings Λ from the partially observed X, impute the missing values and provide the

inferential theory for all estimators.

2.2 Estimation

There are two steps to estimate the latent factor model from the partially observed panel data:

First, we need to estimate the covariance matrix of the data and second we estimate the latent

factors and loadings based on the eigenvectors of the estimated covariance matrix. The conventional

latent factor estimator without missing values applies principal component analysis to the sample

covariance matrix. A natural way to deal with the missing values is to set these entries to zero.

However, the conventional PCA estimator will then be biased. Our estimator correctly reweights

the entries in the covariance matrix before applying PCA.

We first impute the missing entries by 0 and denote the imputed matrix as X̃:

X̃it = XitWit, for i = 1, 2, · · · , N and t = 1, 2, · · · , T

In matrix notation, we have X̃ = X �W , where � denotes the Hadamard product.

When some entries are missing in X, the conventional sample covariance estimator 1
T X̃X̃

>

is biased because the actual realization of the missing values is not equal to zero. We propose

the natural estimator of the covariance matrix where for each entry we only use the time periods

when both units are observed. This is equivalent to estimating the sample covariance matrix with
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X̃, but reweighting the entries. Figure 1 is a simple example to illustrate the covariance matrix

estimation if for a part of the cross-section the entries are missing in the second half of the data.

More generally, our sample covariance matrix estimator equals

Σ̃ij =
1

|Qij |
∑
t∈Qij

XitXjt, (1)

where Qij is the set of time periods t when both units i and j are observed. Under the assumptions

imposed in this paper, 1
|Qij |

∑
t∈Qij XitXjt is a consistent estimator for the covariance between unit

i and j.

X1,1 · · · X1,T0 X1,T0+1 · · · X1,T

X2,1 · · · X2,T0 X2,T0+1 · · · X2,T

(a) Observation pattern for X: Shaded entries are
missing.

1
T0

∑T0
t=1 X1,tX

>
1,t

1
T0

∑T0
t=1 X1,tX2,t

1
T0

∑T0
t=1 X2,tX

>
1,t

1
T

∑T
t=1 X2,tX

>
2,t

(b) Sample covariance matrix Σ̃: Shaded entries are
estimated using observations up to time T0

Table 1: Covariance matrix estimation for X with missing entries. For t = T0 + 1, ..., T the first
N0 cross section units are missing, while the elements N0 + 1, ..., N are observed for all t, i.e.
X1,t =

(
X1,t · · · XN0,t

)
and X2,t =

(
XN0+1,t · · · XN,t

)
.

When the data is fully observed, we can apply Principal Component Analysis (PCA) to 1
NTXX

>

to estimate the loadings.6 Up to rescaling the eigenvectors of the largest eigenvalues estimate the

loadings. Then, we regress X on the estimated loadings to get the estimated factors.7

Similarly, for the partially observed data we apply PCA to 1
N Σ̃ to estimate the loadings.8 We

first estimate loadings and impose the identification assumption Λ̃>Λ̃/N = Ir to uniquely identify

the loadings.9 Estimated loadings Λ̃ are
√
N times the r eigenvectors corresponding to the largest

eigenvalues of the sample covariance matrix, that is

1

N
Σ̃Λ̃ = Λ̃Ṽ . (2)

6Alternatively, we can apply PCA to 1
NT

XX> to estimate the loadings and then regress X> on the estimated
loadings to get the estimated factors. The estimators are also consistent and asymptotic normal. Assume we have
demeaned Xt for every t so in

(
1
N
XX>

)
ij

is a root-
√
N consistent estimate for the covariance cov(Xit, Xjt).

7Bai and Ng (2002) and Bai (2003) develop the inferential theory, i.e., the consistency and asymptotic normality,
for the factors and loadings estimated from PCA.

8We divide Σ̃ by N such that the eigenvalues of 1
N

Σ̃ do not scale with N and T .
9We assume the true number of factors is r and has been consistently estimated as in Bai (2003).
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The next step is to estimate the factors. When the data is fully observed, we can regress Xit on

λ̃i to estimate the factors at time t, F̃t. However, when X:,t is only partially observed, we propose

to regress only the observed Xit on λ̃i. This is a consistent estimator of the factors if the missing

pattern does not depend on the λi, i.e. the unit-specific attributes.

However, we allow for more general observation patterns, that is, the probability of whether

Xit is observed can depend on some observed covariates S ∈ RN×k. In particular, the covariates

S can depend on the unit-specific attributes Λ. We use P (Wit = 1|S) to denote the probability of

Xit being observed, which is an extension of the propensity score used in causal inference10 and

introduces the concept of time into the propensity score. We will have a more detailed discussion

on the observation pattern in Assumption 1 in Section 3.

Given the observation probability P (Wit = 1|S), we estimate F̃ from a weighted average11

F̃t =
1

N

N∑
i=1

Wit

P (Wit = 1|S)
Xitλ̃i =

1

N

∑
i∈Ot

1

P (Wit = 1|S)
Xitλ̃i, (3)

where Ot = {i : Wit = 1} is the set of units observed at time t.12 The weight 1
P (Wit=1|S) is always

at least 1, which compensates for the missing entries at time t and removes the biases in F̃t. The

estimator for F̃t is closely related to the inverse propensity score estimator in causal inference13.

In the special case when all entries at time t are missing at random with equal probability and

independent of the covariates S, that is P (Wit = 1|S) = pt = limN→∞ |Ot|/N for all i, then

equation (3) simplifies to

F̃t =
1

|Ot|
∑
i∈Ot

Xitλ̃i (4)

The last step is to estimate the common component Cit = λ>i Ft. We use the plug-in estimator,

C̃it = λ̃>i F̃t. If Xit is not observed, we estimate Xit by C̃it.

10See (Rosenbaum and Rubin, 1983)
11The standard form of weighted least squares is 1

N

∑N
i=1

Wit
P (Wit=1|S)

Xitλ̃i
(

1
N

∑N
i=1

Wit
P (Wit=1|S)

λ̃iλ̃
>
i

)−1

.

Since 1
N

∑N
i=1

Wit
P (Wit=1|S)

λiλ
>
i

P−→ ΣΛ from Assumption 2.2, we have 1
N

∑N
i=1

Wit
P (Wit=1|S)

Xitλ̃i −
1
N

∑N
i=1

Wit
P (Wit=1|S)

Xitλ̃i
(

1
N

∑N
i=1

Wit
P (Wit=1|S)

λ̃iλ̃
>
i

)−1

= Op
(

1√
N

)
and we use Equation (3) for notational

simplicity.
12We assume 0

0
= 0 in this paper. If P (Wit = 1|S) = 0, we have Wit

P (Wit=1|S)
= 0.

13Compare with (Hahn, 1998; Hirano et al., 2003)
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2.3 An Illustrative Toy Example

We illustrate in a simple example how our estimator differs from the conventional PCA estimator.

Assume that we have only one factor and the factor, loadings and residual components are i.i.d.

normally distributed:

Xit = λiFt + eit Ft
i.i.d.∼ N(0, σ2

F ) λi
i.i.d.∼ N(0, 1) eit

i.i.d.∼ N(0, σ2
e).

As in Table 1 the cross sectional observations 1, ..., N0 are missing for T0 + 1, ..., T . We sepa-

rate the vector of factor realizations into its first F1 =

(
F1 · · · FT0

)>
and second part F2 =(

FT0+1 · · · FT

)>
and similarly for the loadings Λ1 =

(
λ1 · · · λN0

)>
and Λ2 =

(
λN+0+1 · · · λN

)>
.

We start with the simplest case without error terms et to illustrate the logic of reweighting the

entries. In this case the conventional covariance matrix equals

X̃X̃>

T
=

1

T

Λ1F
>
1 0

Λ2F
>
1 Λ2F

>
2


F1Λ

>
1 F1Λ

>
2

0 F2Λ
>
2

 =


√

T0
T Λ1

Λ2

(σ2
F + op(1)

)(√
T0
T Λ>1 Λ>2

)
.

Obviously, the eigenvector of this matrix is a biased estimate of the loadings. In contrast, the

eigenvector of the correctly weighted sample covariance matrix consistently estimates the loadings:

Σ̃ =

Λ1
F>1 F1

T0
Λ>1 Λ1

F>1 F1

T0
Λ>2

Λ2
F>1 F1

T0
Λ>1 Λ2

F>1 F1+F>2 F2

T Λ>2

 =

Λ1

Λ2

(σ2
F + op(1)

)(
Λ>1 Λ>2

)
.

The same logic carries over to the estimator of the factors. Assume that we know the population

loadings. Then, the estimator of the factor from the regression on the loadings equals

1

N
X̃>Λ =

1

N

F1Λ
>
1 F2Λ

>
1

0 F2Λ
>
2


Λ1

Λ2

 =

 F1

F2
N0
N

+ op(1).

which is a biased estimator for the second time period of the factor. The weighted least square
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regression provides a correct estimator

F̃ =

F1
Λ>1 Λ1+Λ>2 Λ2

N

F2
Λ>1 Λ1

N0

 =

F1

F2

+ op(1),

Note that in this special case the probability of observing an entry equals P (Wit = 1|S) = N0
N

which is independent of any covariates S.

The proper reweighting in the loading and factor estimation leads to an additional correction

term in the asymptotic variance of the estimator. As an illustration of this additional challenge,

we add the i.i.d. error term eit to our example. In our simplified setup our consistent estimator for

the loadings Λ̃ has the following expansion for i = 1, ..., N0:

√
T
(
λ̃i − λi

)
=

√
T

T0

(
F̃>F̃

T

)−1
1√
T0

T0∑
t=1

Fteit +
√
T

(
F̃>F̃

T

)−1(
F>1 F1

T0
− F>F

T

)
λi + op(1)

which results in the asymptotic normal distribution

√
T
(
λ̃i − λi

)
d→


N
(

0, TT0

σ2
e

σ2
F

+ 2T−T0
T0

)
for i = 1, ..., N0

N
(

0, σ
2
e

σ2
F

)
for i = N0 + 1, ..., N .

(5)

The second term in the asymptotic expansion is due to averaging over different number of units for

different elements of the loadings. This additional variance correction term vanishes for T0 → T .

Similar terms appear in the distribution of the estimators of the factors and common components.

We show under general conditions how these correction terms arise in the asymptotic distribution

and how to take them into account for the inferential theory.

2.4 Application to Causal Inference

One of the most important applications of our inferential theory is to test for a treatment effect

in the panel data setting. The fundamental problem in causal inference is that we only observe

the outcome under treatment and would like to compare it with the unobserved outcome without

treatment. We will model the counter-factual outcome as the missing observation. Our estimator

allows us to impute the missing observations which serve as the counter-factual control outcome.
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The treatment effect is the difference between the treatment and control outcomes. Our inferential

theory is key to provide feasible test statistics for the treatment effect.

A valid control unit is “close” to the treatment unit except for the treatment effect. Typically

synthetic controls are weighted averages of untreated units where the weights depend on observed

covariates. Our approach is more general. We do not need to take a stand a priori on which

covariates describe if a treated and control units are a good match. Instead, our latent loadings

capture all unit-specific information in a data-driven way. The common component that we impute

is a weighted average of the untreated units that takes all unit-specific information into account.

Our object of interest is the common component of the units after treatment adoption Ctreatit

and the common component of the synthetic control Cctrlit . The treatment effect for unit i at time

t is τit = Ctreatit − Cctrlit . Previous literature in causal inference in the panel data setting focusses

on the average treatment effect over time14. Importantly, our novel approach allows us to test an

entry-wise effect:

H0 : τit = 0 H1 : τit 6= 0

as we can provide the asymptotic distributions for C̃ctrlit and C̃treatit .

Obviously, we can also accommodate an average treatment effect 1
T−T0

∑T
t=T0+1 τit. More gen-

erally, we allow for regressions of the observed treatment units Xtreat
it and unobserved control units

Xctrl
it on observed covariates Z and can test for a treatment effect in the regression coefficients. The

time-series average treatment effect is just a special case. The time-series regression on covariates

Z averages out the residual term eit and hence allows us to extend the analysis beyond the common

component. We provide a test for a treatment effect for the case where the treatment and control

units have different loadings but share the same latent factors and the more general case where

also the latent factors can be different after treatment.

3 Assumptions

Notation. Let M < ∞ denote a generic constant. Let ‖v‖ denote the vector norm and ‖A‖ =

trace(A>A)1/2 the Frobenius norm of matrix A. We denote the set of (time-series/cross-section)

14For example (Li, 2017; Li and Bell, 2017)
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indices corresponding to the observed entries by Ot = {i : Wit = 1}, Ost = {i : Wit = 1 and Wis =

1}, Qi = {t : Wit = 1} and Qij = {t : Wit = 1 and Wjt = 1}. Thus, Oss = Os and Qii = Qi. The

weighting matrices of the inverse probability are Π(−1) = [1/πst] = [N/|Ost|] and Q(−1) = [1/qij ] =

[T/|Qij |], where |S| denotes the cardinality of the set S.

We allow for very general patterns in the missing observations. Figure 1 shows three observa-

tion patterns that are allowed by Assumption 1. These three patterns are widely seen in empirical

applications. The first one is the randomly missing pattern, that is, whether an entry is observed

or not does not depend on other entries or observable covariates. For example, the observational

pattern of the Netflix challenge is modeled as randomly missing entries.15. The second and third

ones are the observation patterns for control panels in simultaneous and staggered treatment adop-

tions. Once a unit adopts the treatment, it stays treated afterwards. These two patterns are widely

assumed in the literature of causal inference in panel data.16.

(a) Randomly missing

(b) Missing pattern for the
control panel in the
simultaneous treatment
adoption

(c) Missing pattern for the
control panel in the staggered
treatment adoption

Figure 1: Patterns of missing observations. The shaded entries indicate the missing entries.

Assumption 1. Missing observations:

1. limN→∞ |Os|/N ≥ π > 0, limN→∞ |Ost|/N ≥ π > 0; Similarly, limT→∞ |Qi|/T ≥ q > 0,

limT→∞ |Qij |/T ≥ q > 0.

2. W is independent of Λ conditional on S. W is independent of F and e.

15(Candès and Recht, 2009; Zhou et al., 2008).
16See (Athey et al., 2018; Athey and Imbens, 2018)
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3. For j 6= i, Wit is independent of Wjs conditional on S.17 The probability of Wit = 1 depends

on S, denoted as P (Wit = 1|S). 0 < p ≤ P (Wit = 1|S).

4. limN→∞|Ot|/N = pt where 0 < p ≤ pt.

Under Assumption 1.1, the number of observed realizations for every cross-section unit i goes

to infinity as T → ∞; similarly, the number of observed outcomes for every time period t goes to

infinity as N →∞. This assumption is necessary for the pointwise asymptotic results for the factors

and loadings, which requires many observations for every time period and every cross-section unit.

The observation pattern can depend on observable covariates S. All our results go through if these

covariates are actually the loadings Λ themselves. However, using the consistent estimator Λ̃ for S

still provides consistent estimator of all quantities, but affects the asymptotic distribution due to

the estimation error. By working with observable covariates we avoid this additional term in the

asymptotic distribution.

Assumption 1.2 is closely connected to the unconfoundedness assumption in causal infer-

ence.18 Wit can depend on the outcome Xit, i.e. observations with specific attributes can be more

likely to be missing. Assumption 1.3 is related to the propensity score and overlap assumption

in causal inference. We allow the observation probability to change over time, which generalizes

the propensity score that is static. We condition on S instead of Si,. to allow a general dependency

structure of W on S. P (Wit = 1|S) = Pt(Wit = 1|Si,:) would rule out network effects, which is

usually assumed in the definition of the propensity score19. We assume P (Wit = 1|S) is bounded

away from 0, such that 1
P (Wit=1|S) does not diverge, which is equivalent to the overlap assumption

in causal inference.

Assumption 2. Factor Model:

1. Factors: ∀ t, E[‖Ft‖4] ≤ F < ∞. There exists some positive definite r × r matrix ΣF , such

that 1
T

∑T
t=1 FtF

>
t

P−→ ΣF and E
∥∥∥√T ( 1

T

∑T
t=1 FtF

>
t − ΣF

)∥∥∥ ≤ M . Furthermore, for any

Qij, 1
|Qij |

∑
t∈Qij FtF

>
t

P−→ ΣF and E
∥∥∥√|Qij |( 1

|Qij |
∑

t∈Qij FtF
>
t − ΣF

)∥∥∥ ≤M .

17t and s can be the same.
18Compare with (Rosenbaum and Rubin, 1983).
19E.g. (Rosenbaum and Rubin, 1983)
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2. Factor loadings: loadings are random, independent of factors and errors and have bounded

fourth moments. There exists some positive definite r×r matrix ΣΛ such that 1
N

∑N
i=1 λiλ

>
i

P−→

ΣΛ and E
∥∥∥√N ( 1

N

∑N
i=1 λiλ

>
i − ΣΛ

)∥∥∥ ≤ M . Moreover, 1
N

∑N
i=1

Wit
P (Wit=1|S)λiλ

>
i

P−→ ΣΛ and

E
∥∥∥√N ( 1

N

∑N
i=1

1
P (Wit=1|S)Witλiλ

>
i − ΣΛ

)∥∥∥ ≤M .

3. Time and cross-section dependence and heteroskedasticity of errors: There exists a positive

constant M <∞, such that for all N and T :

(a) E[eit] = 0, E|eit|8 ≤M .

(b) E[eiseit] = γst,i with |γst,i| ≤ γst for some γst and all i. For all t,
∑T

s=1 γst ≤M .

(c) E[eitejt] = τij,t with |τij,t| ≤ τij for some τij and all t. For all i,
∑

j∈Sst τij ≤M .

(d) E[eitejs] = τij,ts and
∑N

j=1

∑T
s=1 |τij,ts| ≤M for all i and t.

(e) For all i and j, E
∣∣∣ 1
|Qij |1/2

∑
t∈Qij (eitejt − E[eitejt])

∣∣∣4 ≤M .

4. Weak dependence between factor and idiosyncratic errors: for every (i, j),

E

∥∥∥∥∥∥ 1√
|Qij |

∑
i∈Qij

Fteit

∥∥∥∥∥∥
2

≤M.

5. Eigenvalues: The eigenvalues of ΣΛΣF are distinct.

Assumption 2 describes an approximate factor structure and is at a similar level of generality

as Bai (2003): (1) Assumption 2.1 ensures that each factor has a nontrivial contribution to the

variation in X. (2) We assume loadings are random but independent of factors and errors in

Assumption 2.2. We could study a factor model conditioned on some particular realization of the

loadings and the analysis would essentially be equivalent to that under the assumption that loadings

are nonrandom. (3) Assumption 2.3 allows errors to be time-series and cross-sectionally weakly

correlated. (4) Assumption 2.4 allows factors and idiosyncratic errors to be weakly correlated. (5)

Assumption 2.5 guarantees that each loading and factor can be uniquely identified up to some

rotation matrix.

Additionally, we assume that these aspects also hold if we look at a subset of all time periods

(the subset is denoted as Qij in Assumption 2). Together with Assumption 1.2, our covariance
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matrix estimator (1) using incomplete observations has similar properties as the conventional co-

variance matrix estimator 1
TXX

> using full observations. For example, both 1
|Qij |

∑
t∈Qij XitXjt

and 1
T

∑T
t=1XitXjt are consistent estimators for Σij . Moreover, the eigenvalues and principal com-

ponents estimated from both matrices are consistent, which we show in the next section and which

is the foundation to develop the inferential theory of the factor model estimated from Equation (1).

We allow W to depend on S. As a result, the unweighted average Ost, 1
|Ost|

∑
i∈Ost λiλ

>
i does

not necessarily converge to ΣΛ but requires reweighting by the propensity score.20 Assumption 2.2

arises naturally as illustrated by the following example. Assume that the probability of observing

an entry depends on the unit-specific features captured by the loadings P (Wit|S) = P (Wit|λi). For

simplicity we assume that λi is i.i.d. with second moment ΣΛ and rule out network effects. 21 By

the Law of Large Numbers 1
N

∑N
i=1

1
P (Wit|S)Witλiλ

>
i

P−→ E
[
E[Wit|λi]
P (Wit|λi)λiλ

>
i

]
= ΣΛ for all t.

Assumption 3. Moments and Central Limit Theorems: ∃M <∞ s. t. for all N and T

1. E
∥∥∥∥ 1√

N

∑N
i=1

1√
|Qij |

∑
t∈Qij (eitejt − E[eitejt])

∥∥∥∥2

≤M for every j.

2. E
∥∥∥∥ 1√

N

∑N
i=1

1√
|Qij |

∑
t∈Qij λiF

>
t eit

∥∥∥∥2

≤M for every t

3.
√
T
N

∑N
i=1 λiλ

>
i

1
|Qij |

∑
t∈Qij Fteit

d−→ N(0,Φj) for every j, where

Φj = limN,T→∞
T
N2

∑N
i=1

∑N
l=1 E

[
λiλ
>
i

(
1

|Qij ||Qlj |
∑

s∈Qij ,t∈Qlj ,(s,t)∈Ωej
E
[
FsF

>
t ejsejt

])
λlλ
>
l

]
.

4. 1√
N

∑
i∈Ot

1
P (Wit=1|S)λieit

d−→ N(0,Γt) for every t, where

Γt = limN→∞
1
N

∑
i∈Ot,l∈Ot,(i,l)∈Ωet

1
P (Wit=1|S)P (Wlt=1|S)E[λiλ

>
l ]E[eitelt].

5.
√
T
N

∑N
i=1 λiλ

>
i

(
1
|Qij |

∑
t∈Qij FtF

>
t − 1

T

∑T
t=1 FtF

>
t

)
d−→ N(0,ΞF,j)

22 for every j.

6.
√
N
(

1
N

∑N
i=1

Witλiλ
>
i

P (Wit=1|S) −
1
N

∑N
i=1 λiλ

>
i

)
d−→ N(0,ΘΛ,t)

23 for any t.

7. 1
N2

∑N
i=1

∑N
l=1 λlλ

>
l

(
1
|Qli|

∑
s∈Qli FsF

>
s − 1

T

∑T
s=1 FsF

>
s

)
λiλi = op

(
1√
T

)
20In the causal inference literature, the inverse propensity score weighted estimator is widely used to estimate the

treatment effect, see for example (Hahn, 1998; Hirano et al., 2003).
21We can interpret this case as we first sample λi from some i.i.d. distribution and we estimate the latent model

of X with missing entries conditional on Λ.
22This statement should be read as

√
T
N
vec

(∑N
i=1 λiλ

>
i

(
1
|Qij |

∑
t∈Qij

FtF
>
t − 1

T

∑T
t=1 FtF

>
t

))
d−→ N(0,ΞF,j),

where vec is the vectorization operator.
23This statement should be read as

√
Nvec

(
1
N

∑N
i=1

Witλiλ
>
i

P (Wit=1|S)
− 1

N

∑N
i=1 λiλ

>
i

)
d−→ N(0,ΘΛ,t)), where vec is the

vectorization operator.
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8. 1
N2

∑
i∈Ot

1
P (Wit=1|S)

∑N
l=1 λlλ

>
l

(
1
|Qli|

∑
s∈Qli FsF

>
s − 1

T

∑T
s=1 FsF

>
s

)
λieit = op

(
1√
T

)
Assumption 3 is not required to show the consistency of loadings and factors but is only used

to show the asymptotic normality of the estimators. Assumption 3.1-4 is closely related to the

moment and CLT assumptions in Bai (2003). The first two parts in Assumptions 3 restrict the

second moments of certain averages. The 3rd and 4th point state the necessary central limit

theorems.
√
T
N

∑N
i=1 λiλ

>
i

1
|Qij |

∑
t∈Qij Fteit

d−→ N(0,Φj) is one of the leading terms in the asymptotic

distribution of the estimated loadings λ̃i. However, 1
|Qij |

∑
t∈Qij Fteit varies with i so we cannot

separately average over the cross-sectional and time dimension as in the conventional framework.

Point 5-8 are specific to the missing value problem and introduce the correction terms that appear

in the asymptotic distribution. They are due to the fact that our estimator averages over different

number of observations for different entries in the covariance matrix.

4 Asymptotic Results

4.1 Consistency

We first show the consistency of our estimators. Similar as Bai (2003), our analysis starts with

plugging in X̃ = (Λ>F + e)�W into Eq. (2). With some algebra, we have

λ̃j =
1

NT
Ṽ −1

N∑
i=1

λ̃iλ
>
i F
>diag(Wi �Wj)Fλj/qij︸ ︷︷ ︸
Hjλj

+
1

NT
Ṽ −1

N∑
i=1

λ̃ie
>
i diag(Wi �Wj)Fλj/qij︸ ︷︷ ︸

I

+
1

NT
Ṽ −1

N∑
i=1

λ̃iλ
>
i F
>diag(Wi �Wj)ej/qij︸ ︷︷ ︸
II

+
1

NT
Ṽ −1

N∑
i=1

λ̃ie
>
i diag(Wi �Wj)ej/qij︸ ︷︷ ︸

III

,

where Hj = 1
NT Ṽ

−1
∑N

i=1 λ̃iλ
>
i F
>diag(Wi �Wj)F/qij is different for different units j. Let H =

1
NT Ṽ

−1Λ̃>ΛF>F , which is defined similarly to the rotation matrix H in Bai and Ng (2002). Then

we have

λ̃j −Hλj = λ̃j −Hjλj + (Hj −H)λj = I + II + III + (Hj −H)λj .

We show in the appendix that the time-series averages of the square of I, II and III converge

to 0 at the rate Op
(
min

(
1
N ,

1
T

))
. Furthermore, Under Assumption 2.1, 1

T F
>F

P−→ ΣF and
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1
|Qij |

∑
t∈Qij FtF

>
t

P−→ ΣF , we can show Hj −H = Op

(
min

(
1√
N
, 1√

T

))
.

Then we have the following theorem for the consistency of the estimated loadings.

Theorem 1. Define δ2
NT = min(N,T ). Under Assumptions 1 and 2, we obtain

δ2
NT

 1

N

N∑
j=1

∥∥∥λ̃j −Hλj∥∥∥2

 = Op(1), (6)

where H = 1
NT Ṽ

−1Λ̃>ΛF>F .

Theorem 1 states that the whole loading matrix can be consistently estimated up to an appro-

priate rotation as N,T →∞ even if we only observe an incomplete panel matrix. The convergence

rate is the same rate as for the fully observed panel in Bai and Ng (2002). Theorem 1 is based

on the assumption that the observed entries are representative for the missing entries and hence

provide a consistent estimation. Theorem 1 is a critical intermediate step to show the asymptotic

normality of the estimated factor model in the next section.

4.2 Asymptotic Normality

The factors, loadings and common components are asymptotically normally distributed.

Theorem 2. Under Assumptions 1-3 and if
√
T/N → 0, then for each i as N,T →∞:

√
T (λ̃j −Hλj) =

√
T

N
Ṽ −1H

N∑
i=1

λiλ
>
i

1

|Qij |
∑
t∈Qij

Ftejt +
√
T Ṽ −1(Hj −H)λj + op(1) (7)

d−→ N
(

0, V −1(Q−1)>(Φj + (λ>j ⊗ I)ΞF,j(λj ⊗ I))Q−1V −1
)
, (8)

where Q = V 1/2ΥΣ
−1/2
F , V is a diagonal matrix with the diagonal entries being the eigenvalues of

Σ
1/2
F ΣΛΣ

1/2
F , Υ is the corresponding eigenvectors, Φj and ΞF,j are defined in Assumption 3. Assume

we know the auto-correlation structure in error terms that are only weakly serially dependent, then

the plug-in estimator Γ̃λj for the asymptotic variance in (8) is consistent and yields

√
T Γ̃
−1/2
λj

(λ̃j −Hλj)
d−→ N(0, Ir). (9)

Theorem 2 states that the estimated loadings converge at the rate of
√
T , which is the same
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as the conventional PCA in Bai (2003). The asymptotic distribution of estimated loadings is

determined by two terms: the time-series average of Ftejt, the first term in the right-hand side

(RHS) of Equation (7), and the difference between the unit-specific rotation matrix Hj and the

unified rotation matrix H, the second term in the RHS of Equation (7). In the conventional PCA,

the asymptotic distribution of the loadings only depends on the first term, the time-series average

of Ftejt. The difference between Hj and H has mean 0 but is of the order of Op

(
1√
T

)
, and thus the

difference contributes to the asymptotic distribution of the loadings. Compared with the estimated

loadings from the fully observed data, the estimated loadings from the partially observed data have

a larger variance. This finding makes intuitively sense as estimating loadings from the partially

observed data is equivalent to estimating the loadings with less data, i.e., a smaller panel. The

asymptotic normal distribution comes from Assumptions 3.3 and 3.5, which describe asymptotically

independent distributions.

Theorem 3. Under Assumptions 1-3 and if
√
N/T → 0, then for each t as N,T →∞:

√
N(F̃t − (H−1)>Ft) =

1√
N

∑
i∈Ot

1

P (Wit = 1|S)
Hλieit +

1√
N

N∑
i=1

vi,tHλiλ
>
i Ft + op(1) (10)

d−→ N(0, (Q−1)>(Γt + (F>t ⊗ I)ΘΛ,t(Ft ⊗ I))Q−1), (11)

where vi,t = 1
P (Wit=1|S) − 1 for i ∈ Ot and vi,t = −1 for i 6∈ Ot. Assume we know the cross-section

correlation structure in the error terms and they are only weakly dependent 24, then the plug-in

estimator Θ̃Ft for the asymptotic variance in (11) is consistent and yields

√
T Θ̃
−1/2
Ft

(F̃t − (H>)−1Ft)
d−→ N(0, Ir). (12)

Theorem 3 states that the convergence rate of the estimated factors is
√
N , which is the same as

the conventional PCA. Similar to the estimated loadings, the asymptotic distribution of estimated

factors is determined by two terms: the cross-section weighted average of λieit, the first term in

the RHS of Equation (10), and the difference between the time-specific rotation matrix and the

unified rotation matrix (H−1)>, the second term in the RHS of Equation (10). When the data is

fully observed, the asymptotic distribution of Ft is driven by the first term and the second term

24This assumption can be replaced by an appropriate sparsity assumption with a corresponding threshold estimator.
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vanishes as in Bai (2003). The second term has mean 0 and its variance is increasing in the number

of missing observations. The asymptotic normal distribution comes from the two asymptotically

independent terms in Assumptions 3.4 and 3.6.

Theorem 4. Under Assumptions 1-3, then for each t and i as N,T →∞:

δNT (C̃it − Cit) = δNT (λ̃i −Hλi)>(H>)−1Ft + δNT (Hλi)
>(F̃t − (H>)−1Ft) + op(1) (13)

d−→ N

(
0,
δ2
NT

N
λ>i Σ−1

Λ (Γt + (F>t ⊗ I)ΘΛ,t(Ft ⊗ I))Σ−1
Λ λi

+
δ2
NT

T
F>t Σ−1

F Σ−1
Λ (Φi + (λ>i ⊗ I)ΞF,i(λi ⊗ I))Σ−1

Λ Σ−1
F Ft

)
(14)

where C̃it = λ̃>i F̃t and Cit = λ>i Ft. Furthermore, for consistent estimators Γ̃λi as in Theorem 2

and Θ̃Ft as in Theorem 3 we have

(
1

T
λ̃>i Θ̃Ft λ̃i +

1

N
F̃>t Γ̃λiF̃t

)−1/2

(C̃it − Cit)
d−→ N(0, 1). (15)

Theorem 4 states that the asymptotic distribution of the estimated common component is

determined by the asymptotic distributions of both the estimated loadings and factors. It depends

on the order of N and T which distribution dominates. If N is of a smaller order, the asymptotic

distribution of the factors dominates; if T is of the smaller order, the asymptotic distribution of

the loadings dominates; otherwise both distributions contribute.

4.3 Test of Treatment Effects

The asymptotic results in Section 4.2, in particular Theorem 4, can be used to answer the important

question in causal inference, whether a unit’s treatment effect at a particular time period, denoted

as τit, is significant or not. We assume the potential outcome for both the control and treated have

an approximate low-rank structure. The treatment effect for unit i at time t is τit = Ctreatit −Cctrlit .

In this paper, we want to test if the treatment effect τit is significantly different from 0 as in

Equation (6). In the following, we discuss how to estimate and test τit for two cases:

1. Control factors F ctrl and treated factors F treat are different, that is, F ctrl and F treat span

different vector spaces.
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2. Control factors F ctrl and treated factors F treat are the same, that is, F ctrl and F treat span

the same space.

4.3.1 Control and Treated Panel Have Different Factors

When F ctrl and F treat are different, we estimate a factor model from the incomplete control panel

and another one from the incomplete treated panel using the estimation approach in Section 2. This

means we apply our estimation approach twice where we either view the treated units as missing

values to obtain the loadings and factors for the control or we view the untreated units as missing

values to obtain the loadings and factors for the treatment. We can directly extend Theorem 4 to

obtain the asymptotic distribution of the estimated treatment effect τ̃it = C̃treatit − C̃ctrlit .

Theorem 5. Assume the control panel Y c and the treated panel Y t both follow Assumptions 1-3.

For each i and t, as N,T →∞, we have

δNT (τ̃it − τit) = δNT (C̃treatit − Ctreatit )− δNT (C̃ctrlit − Cctrlit )

d−→ N(0,M ctrl
it +M treat

it ) (16)

where M ctrl
it and M treat

it are the asymptotic variances of δNT (C̃ctrlit −Cctrlit ) and δNT (C̃treatit −Ctreatit )

defined in (14). Furthermore, we have

τ̃it − τit
σ̃τit

d−→ N(0, 1), (17)

where σ̃2
τit = M̃ ctrl

it + M̃ treat
it with M̃ ctrl

it = 1
T (λ̃ctrli )>Θ̃F ctrlt

λ̃ctrli + 1
N (F̃ ctrlt )>Γ̃λctrli

F̃ ctrlt , M̃ treat
it =

1
T (λ̃treati )>Θ̃F treatt

λ̃treati + 1
N (F̃ treatt )>Γ̃λtreati

F̃ treatt , and δ2
NT M̃

ctrl
it and δ2

NT M̃
treat
it are consistent es-

timators of M ctrl
it and M treat

it .

The asymptotic distribution of τ̃it−τit depends on the asymptotic distributions of C̃treatit −Ctreatit

and C̃ctrlit −Cctrlit . The asymptotic distributions of C̃treatit −Ctreatit and C̃ctrlit −Cctrlit depend on etreatit

and ectrlit respectively. For each i and t, we observe at most one of Xtreat
it and Xctrl

it . Hence, the

asymptotic distributions of C̃treatit − Ctreatit and C̃ctrlit − Cctrlit are asymptotically independent. As

a result, τ̃it − τit is asymptotically normal with the asymptotic variance being the sum of the

asymptotic variances of C̃treatit − Ctreatit and C̃ctrlit − Cctrlit .
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Theorem 5 allows us to test individual treatment effects for each i and t which is novel in the

literature on causal inference for panel data.25 In many empirical applications, the object of interest

is a unit’s average treatment effect over time (Abadie et al., 2010, 2015; Doudchenko and Imbens,

2016; Li and Bell, 2017). That is,

H0 : 1
T−T0,i

∑T
t=T0,i+1 τit = 0 H1 : 1

T−T0,i

∑T
t=T0,i+1 τit 6= 0, (18)

where T0,i is the last time period with control observations for unit i.26 We estimate 1
T−T0,i

∑T
t=T0,i+1 τit

by the plug-in estimator 1
T−T0,i

∑T
t=T0,i+1 τ̃it. We need an additional assumption for the CLT on

the subset of the treated data which is closely related to Assumption 3:

Assumption 4. For T0,i < T satisfying T − T0,i →∞, it holds

1. 1
T−T0,i

∑T
T0,i+1 Ft

P−→ µF .

2. 1√
T−T0,i

∑T
T0,i+1 Fteit

d−→ N(0,Ψi).

3. 1√
N(T−T0,i)

∑T
t=T0,i+1

∑
j∈Ot

1
P (Wjt=1|S)λjejt = op(1)

4. 1√
N

∑N
j=1

(
1

T−T0,i

∑T
t=T0,i+1

(
Wjtλjλ

>
j

P (Wjt=1|S) − λjλ
>
j

)
Ft

)
d−→ N(0,ΘΛ,i).

Assumption 4 is an extension of Assumptions 3.4 and 3.6. It is used to show that the time-series

weighted average of estimated common components and imputed values is asymptotically normal as

in Lemma 1 and Theorem 6. Then, we have the following result about the asymptotic distribution

of the estimated time-series average treatment effect 1
T−T0,i

∑T
t=T0,i+1 τ̃it.

Lemma 1. Assume the control panel Y c and the treated panel Y t both follow Assumptions 1-4. As

N,T, T − T0,i →∞, for each i, the average estimated common component for the control Cctrlit and

treated Ctreatit has (for notation simplicity, we omit the superscript ctrl and treat in the following)

δNT
T−T0,i

∑T
t=T0,i+1

(
C̃it − Cit

)
d−→ N

(
0, λ>i Σ−1

Λ ΘΛ,iΣ
−1
Λ λi + µ>FΣ−1

F Σ−1
Λ (Φi + (λ>j ⊗ I)ΞF,i(λi ⊗ I))Σ−1

Λ Σ−1
F µF

)
(19)

25For example, if we want to test H0 : τit = 0 for some i and t, we reject H0 if |τ̃it/σ̃τit | is larger than 1.96 for the
two-sided test (or larger than 1.645 for the one-sided test) at 95% confidence level.

26For the one-sided test, H1 : 1
T−T0,i

∑T
t=T0,i+1 τit > 0 or H1 : 1

T−T0,i

∑T
t=T0,i+1 τit < 0.
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where Θi and ΞF,i are defined in Assumption 3, and ΘΛ,i is defined in Assumption 5. Denote the

asymptotic variance in Equation (19) as Mi. Then we have for the average treatment effect

1

σ̃τi

 1

T − T0,i

T∑
t=T0,i+1

τ̃it −
1

T − T0,i

T∑
t=T0,i+1

τit

 d−→ N(0, 1), (20)

where σ̃2
τi = M̃ ctrl

i +M̃ treat
i , δ2

NT M̃
ctrl
i and δ2

NT M̃
treat
i are consistent estimators of M ctrl

i and M treat
i ,

M̃ ctrl
i = 1

T (λ̃ctrli )>Θ̃Λctrl,iλ̃
ctrl
i + 1

N

(
1

T−T0,i

∑T
t=T0,i+1 F̃

ctrl
t

)>
Γ̃λctrli

(
1

T−T0,i

∑T
t=T0,i+1 F̃

ctrl
t

)
,

M̃ treat
i = 1

T (λ̃treati )>Θ̃Λtreat,iλ̃
treat
i + 1

N

(
1

T−T0,i

∑T
t=T0,i+1 F̃

treat
t

)>
Γ̃λtreati

(
1

T−T0,i

∑T
t=T0,i+1 F̃

treat
t

)
,

Γ̃λctrli
and Γ̃λtreati

are defined in Theorem 2, and Θ̃Λctrl,i and Θ̃Λtreat,i are defined in Lemma 14 in

the Appendix.

4.3.2 Control and Treated Panel Share the Same Factors

When the control and treated panels share the same set of factors, we can write the potential

outcome for the control as Xctrl
it = Cctrlit + ectrlit = (λctrli )>Ft + ectrlit and the treated as Xtreat

it =

Ctreatit +etreatit = (λtreati )>Ft+etreatit . While the factors are the same, we allow the loadings λctrli and

λtreati to be different. The implication of this setting is that the treatment does not affect the latent

factors, but only affects the units’ exposure to factors. For example, in our empirical study about

the publication effect of anomalies, the no-arbitrage principle implies the existence of a stochastic

discount factor (SDF) that is spanned by the same latent factors and can price all assets. Our

SDF does not change after publications, but the anomaly’s exposure to this SDF captured by the

loadings may change after publications. Hence, the average returns or exposure to risk factors can

be affected by the publication as the portfolios load on different parts of the SDF after investors

become aware of an anomaly.

When the majority of the observations are control observations as in most causal inference

applications such as our empirical study and Abadie et al. (2010, 2015), we estimate the factor

model from the incomplete control panel Xctrl. Assuming a permanent treatment effect, we can
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use ordinary least squares (OLS) to estimate the loadings for treated λ̃treati ,27

λ̃treati =

 T∑
t=T0,i+1

F̃tF̃
>
t

−1
T∑

t=T0,i+1

F̃tX
treat
it , (21)

where Ti is the treatment adoption time for unit i and T is the total number of periods. The

common components for the treated panel can be estimated by C̃treatit = (λ̃treati )>F̃t. We have the

following lemma to show the asymptotic distribution for C̃treatit .

Lemma 2. Assume T − T0,i → ∞ for T0,i < T and define δ2
N,T−T0,i

= min(N,T − T0,i). Under

Assumptions 1-4 we have

δN,T−T0,i(C̃
treat
it − Ctreatit )

d−→ N

(
0,

δ2
N,T−T0,i

N (λtreati )>Σ−1
Λ (Γt + (F>t ⊗ I)ΘΛ,t(Ft ⊗ I))Σ−1

Λ λtreati

+
δ2
N,T−T0,i

T−T0,i
F>t Σ−1

F ΨiΣ
−1
F Ft.

)
(22)

Similar to Theorem 4, there are two terms in the asymptotic distribution. For (T −T0,i)/N → 0

or N/(T − T0,i) → 0 only one term remains; otherwise both of them contribute. One question of

interest is whether the average common component over time changes by the treatment. That is

to test

H0 :
1

T − T0,i

T∑
t=T0,i+1

(Cctrlit − Ctreatit ) = 0, H1 :
1

T − T0,i

T∑
t=T0,i+1

(Cctrlit − Ctreatit ) 6= 0.

Note, that 1
T−T0,i

∑T
t=T0,i+1Cit = (~1>~1)−1~1>Ci,(T0,i+1):T (with the superscript to be either ctrl or

treat). We can generalize ~1 to a generic Z and let

βctrli = (Z>Z)−1Z>Cctrli,(T0,i+1):T and βtreati = (Z>Z)−1Z>Ctreati,(T0,i+1):T

and test

H0 : βctrli = βtreati H1 : βctrli 6= βtreati .

27If units switch between treatment and control, we can modify Equation (21) to λ̃treati =(∑
t∈Si F̃tF̃

>
t

)−1∑
t=Si F̃tX

treat
it , where Si it the set of indices for the treated observations. Lemma 2 can be

adapted accordingly.
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We require the additional weak assumption that links the regressors with the approximate factor

model.

Assumption 5. For T0,i < T satisfying T − T0,i →∞ it holds for Z ∈ R(T−T0,i)×L

1√
N

N∑
j=1

 T∑
t=T0,i+1

(
Wjtλjλ

>
j

P (Wjt = 1|Λ)
− λjλ>j

)
FtZ

>
t−T0,i

(Z>Z)−1

 d−→ N(0,ΘΛ,i,Z)

We obtain feasible estimates by regressing the estimated common components C̃ctrlit and C̃treatit

on the observed covariates Z to estimate the coefficients

β̃ctrli = (Z>Z)−1Z>C̃ctrli,(T0,i+1):T and β̃treati = (Z>Z)−1Z>C̃treati,(T0,i+1):T .

Equipped with Lemma 2 and Theorem 4, we can show the asymptotic distributions of β̃ctrli ,

β̃treati and β̃ctrli − β̃treati . Here, we present the distribution for β̃ctrli − β̃treati and delegate the

distributions for the individual β̃ctrli and β̃treati to the Appendix.

Theorem 6. Suppose Assumptions 1-5 hold and T − T0,i →∞:

δN,T−T0,i((Z
>Z)−1Z>MZ(Z>Z)−1 +MZ)−1/2

(
(β̃ctrli − β̃treati )− (βctrli − βtreati )

)
d−→ N (0, I) (23)

where M is a (T − T0,i)× (T − T0,i) matrix with

Mt−T0,i,t−T0,i =
δ2
N,T−T0,i

T
F>t Σ−1

F Σ−1
Λ (Φi + ((λctrli )> ⊗ I)ΞF,i(λ

ctrl
i ⊗ I))Σ−1

Λ Σ−1
F Ft

+
δ2
N,T−T0,i

T − T0,i
F>t Σ−1

F ΨiΣ
−1
F Ft

Mt−T0,i,s−T0,i =
δ2
N,T−T0,i

T
F>t Σ−1

F Σ−1
Λ (Φi + ((λctrli )> ⊗ I)ΞF,i(λ

ctrl
i ⊗ I))Σ−1

Λ Σ−1
F Fs

+
δ2
N,T−T0,i

T − T0,i
F>t Σ−1

F ΨiΣ
−1
F Fs

MZ,lm =
δ2
N,T−T0,i

N
(λctrli − λtreati )>Σ−1

Λ ΘΛ,i,Z,lmΣ−1
Λ (λctrli − λtreati )

Given the asymptotic distribution for β̃ctrli and β̃treati in Lemma 6, we can test if βi is affected

by the treatment, that is, if βctrli and βtreati are the same or different. As an example, for Z = ~1,
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we can use (23) to test if the average treatment effect is 0, and then in Equation (23), we have

(Z>Z)(Z>MZ)−1/2 =
T−T0,i√∑T−T0,i

t=1

∑T−T0,i
s=1 Mts

.

5 Feasible Estimator of P (Wit|S)

We provide a feasible estimator for P (Wit|S) which we need in (3) to estimate the factors. If

the estimator satisfies P̂ (Wit|S) = P (Wit|S) + op

(
min

(
1√
N
, 1√

T

))
, then the estimation error of

P̂ (Wit|S) can be neglected and does not affect the asymptotic distributions of estimated factors F̃t

and common components C̃it. Then, Theorems 3 and 4 continue to hold if we use P̃ (Wit|S) in (3).

As previously mentioned, we could set S = Λ, i.e. consider P (Wit|Λ). Then, the observation

pattern can depend on all unobserved unit-specific attributes. However, the major challenge is

to estimate the probability P (Wit|λi) as we do not observe the latent features λi. If we use the

estimated features λ̃i, whose estimation error is of the order Op

(
1√
N

)
based on Theorem 2, the

estimation error for the observed probability is of an order of at least Op

(
1√
N

)
. Hence, the

estimation error of P̂ (Wit|λ̃i) would contribute to the asymptotic distributions of F̃t and C̃it.

In order to avoid this issue, we condition on observed covariates S. These covariates can have

the same span as the latent factors, but do not suffer from the estimation error. In the following

we discuss three cases for a feasible estimator of P (Wit|S).

In the first case, we assume that the probability of observing an entry does not depend on unit

specific features, i.e. P (Wit|S) = P (Wit). Then, we can estimate P (Wit) by |Ot|N . The convergence

rate of the estimated probability P̂ (Wit) is 1
N . If

√
T/N → 0, which is also assumed in Theorem 2,

then the estimation error of P̂ (Wit) is of the order op

(
min

(
1√
N
, 1√

T

))
.

In the second case, P (Wit|S) = f(S) we allow for unit specific features where we can use the full

observation matrix to estimate f(S). Since we have NT observations, if we impose a parametric

form on f(S), for example a logit model, then f(S) can be consistently estimated at the rate
√
NT .

Alternatively, if we do not impose a functional form f(S), we can use a nonparametric regression

to estimate f(S). This probability can be consistently estimated at the rate
√
NTh1h2 · · ·hp,

where h1, · · · , hp are the bandwidths for 1st, 2nd, ..., p-th coordinate in S. When NTh1h2 · · ·hp �

max(
√
T ,
√
N), the estimation error is of the order op

(
min

(
1√
N
, 1√

T

))
.

In the third case, when S only takes finitely many values, then P̂ (Wit|S = s) =
|Oζ,t|
Ns

, where
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Ns =
∑N

i=1 1(S = s) and OS,t = {i : Wit = 1 and S = s}. The convergence rate is 1
Ns

. When

Ns � max(
√
T ,
√
N) for all s, the estimation error is of the order op

(
min

(
1√
N
, 1√

T

))
.

6 Simulation

In this section, we demonstrate the finite sample properties of our asymptotic results for both

the observed entries and the missing entries. We confirm the theoretical distribution results for

the factor, loadings and common components and show that without the proper reweighting and

variance correction term the asymptotic distribution is severely biased.

We generate the data from a one-factor model for 2,000 Monte Carlo simulations:

Xit = λ>i Ft + eit

where Ft
i.i.d.∼ N(0, 1), λi

i.i.d.∼ N(0, 1) and eit
i.i.d.∼ N(0, 1). We study two missing patterns

1. Data is randomly missing.

2. Staggered adoption with irreversible treatment: The probability of missing observations de-

pends on the unit specific features and once not observed the unit’s observations stay missing.

6.1 Asymptotic Distribution

For both observation patterns, the finite sample distribution results of our estimators work well.

The main text presents the results for the randomly missing observations while the Appendix

collects the results for the staggered adoption case.

In the randomly missing case, the observation matrix W is generated from Wit ∼ Bernoulli(p),

where p = 0.5 or 0.9. Figure 2 shows the histogram of the standardized common components for

randomly selected observed entries and missing entries. We present the corresponding histograms

of the standardized estimated factors and loadings in Figures 14 and 15 in the Appendix. The

estimates are centered and standardized using consistent estimates of the theoretical mean and

standard deviation. 28

28We use Cit (λ>i Ft) as the theoretical mean in Figure 2. Moreover, because we know H in the simulation, we
use HFt and (H>)−1λi as the theoretical means in Figures 14 and 15 in the Appendix. The theoretical standard

deviations are calculated based on the plug in estimators for Ft, λi and eit. If (i, t) ∈ O, ẽit = X̃it − λ̃>i F̃t is a
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For the staggered adoption pattern, the observation matrix W is generated from the following

scheme:

1. All the observations before T0 are control observations. That is, for t ≤ T0, it holds Wit = 1.

2. After T0, if unit i is not treated at time t − 1, the probability for this unit to stay in the

control group at time t > T0 is P (Wit = 1|λi,Wi,t−1 = 1) = 1
1+4 exp(0.1λi)

,29 where λi is a

scalar. If unit i is treated at time t− 1, then it stays treated at time t > T0.

Figures 16-18 in the Appendix show histograms of the standardized estimated factors, loadings and

common components for randomly selected observed entries and missing entries. The histograms

match the standard normal density function very well and support the validity of our asymptotic

results in finite samples.
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Figure 2: Randomly Missing: Histograms of estimated standardized common components. The
normal density function is superimposed on the histograms. P (Wit = 1|λi) = p for any i and
t, where p = 0.5 and 0.9 in the simulation. The caption in the sub-figures denotes a tuple of
(N,T, p,Wit).

6.2 Estimation Without Reweighting or Variance Correction

Our simulations confirm that without proper reweighting the estimates are severely biased. Here,

we plot the histograms of the standardized estimated factors, loadings and common components

similar as in the last subsection for randomly missing data, but instead of using the reweighting

consistent estimator for eit.
29Here we assume S = Λ.
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scheme in (1) to estimate the sample covariance matrix and the weighted linear regression in (3)

to estimate the factors, we use 1
T X̃X̃

> as the sample covariance matrix and conventional PCA

estimators. Figure 3 shows that the asymptotic distributions of the estimated factors, loadings and

common components from the conventional PCA estimators in the presence of missing data. We

can see that our method is critical to get the correct asymptotic distributions for the latent factor

model.
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Figure 3: Randomly Missing: Histograms of estimated standardized factors, loadings and common
components, where the factor model is estimated with conventional PCA. The normal density
function is superimposed on the histograms. The observation probability is 0.5, N = 500 and
T = 500.

The simulations demonstrate that without the variance correction term the asymptotic stan-

dard errors are too small. We plot the histograms of the standardized estimated factors, loadings

and common components for the randomly missing observation pattern, but without correcting

the variances with the additional terms in Theorems 2-4. Without the variance correction term,

the asymptotic distribution has a too low variance compared to the Monte Carlo simulations, as

illustrated in Figure 4. Thus, the additional variance term cannot be ignored in the asymptotic

distributions of the estimated factors, loadings, and common components.
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Figure 4: Randomly Missing: Histograms of estimated standardized factors, loadings and common
components, where the variances are not corrected by the additional variance terms in Theorems
2-4. The normal density function is superimposed on the histograms. The observation probability
is 0.5, N = 500 and T = 500.

7 Empirical Study: Publication Effect on Anomaly Returns

There is an ongoing debate in asset pricing whether academic publications result in the disappear-

ance, reversion or attenuation of anomalies in equity returns. An anomaly describes a pattern in

average returns that cannot be explained by a benchmark asset pricing model as for example the

Capital Asset Pricing Model (CAPM). Schwert (2003) finds that anomalies including size effect,

value effect, weekend effect and dividend yield effect seem to have disappeared or lost the pre-

dictive power after they were published. McLean and Pontiff (2016) suggest a 32% lower return

from publication-informed trading. Harvey et al. (2016) suggest that the publication returns are

biased upwards because of journals’ preference for large t-statistics. Chen and Zimmermann (2018)

measure that 12% of the anomalies’ returns are due to the publication bias while 35% are due to

mis-pricing that can be traded away after the anomalies are discovered.

In this paper, we study if the publication in an academic journal has a significant negative

effect on the risk premium of anomaly portfolios. We use the data of Chen and Zimmermann

(2018)30 which contains monthly returns for characteristic-sorted quintile portfolios from July 1963

30We thank the authors for sharing the data. We refer to their paper for the details of the data collection. The
data is available on the website https://sites.google.com/site/chenandrewy/home?authuser=0

30

https://sites.google.com/site/chenandrewy/home?authuser=0


to December 2015. Each anomaly is based on a firm-specific variable, e.g. the size or book-to-

market ratio. All U.S. stocks are sorted into five quintile portfolios based on the cross-sectional

rank order of the firm-specific characteristic values and the composition is regularly updated. Long-

short portfolios that buy the highest quintile and sell the lowest quintile portfolio are a standard

procedure to construct “risk factors” that exploit the risk premium in these strategies. Most of

these strategies have a large average return, i.e. these are zero cost portfolios, that provide a

positive average payoff with a high probability. Our data set consists of a panel with 111 long-short

portfolios and 630 time-series observations. Appendix 9.1 contains a detailed description of all the

anomaly portfolios sorted by the publication effect as described next.

We define the “treatment” as the publication of an anomaly strategy in an academic journal.

The returns of portfolios before publication are the control observations, while the returns after

publication serve as the treated observations. Figure 5 shows the observation patterns for the

control and treated panels. The control panel in Figure 5a uses only returns before publications

and treats the post-publication returns as missing values as indicated by the shaded entries.31 This

pattern is reversed for the treated panel in Figure 5b that only uses entries after the publication.

(a) Control panel (b) Treated panel

Figure 5: Observation patterns for the control (before publication) and treated (after publication)
panels. The shaded entries represent the missing entries.

Under the assumption of no-arbitrage and complete markets, there exists a unique stochastic

discount factor (SDF) that can price all assets. In an approximate factor model this SDF is spanned

by the latent factors which can explain well the cross-section of expected returns.32 We assume that

31A small number of anomalies have also a few missing values at the beginning of the sample.
32See for example(Kozak et al., 2019; Kelly et al., 2018; Lettau and Pelger, 2018).
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the stochastic discount factor does not change by the publication of anomalies, i.e. the same latent

factors describe the returns before and after publication. However, the exposure of the assets to

the SDF can be affected by the publication, i.e. the loadings with respect to the latent factors and

hence also their risk premium can change. Since most observations are available before publication

we estimate the latent factors from the control panel and use the regression method in Section

4.3.2 to estimate loadings and common components after publication. We compare the estimated

returns without and with publication on the time periods after an anomaly has been published to

study the following two questions:

1. Does publication decrease the average returns of an anomaly portfolio?

2. Does publication decrease the pricing error (alpha) against the popular CAPM model?

The first question is related to the observation33 that the mean return is lowered after pub-

lication, i.e. the risk premium of the anomaly decreases. This can be due to mis-pricing of the

portfolios and after investors become aware of this arbitrage opportunity it is traded away. The

second question is related to the fishing for alphas argument, i.e. journals are only willing to publish

an anomaly if it is significant relative to the most relevant benchmark model, the CAPM model,

although it may be just noise. Hence, it is possible that an insignificant anomaly gets published

due to the multiple hypothesis testing problem (Harvey et al., 2016). Instead of directly comparing

the mean returns before and after publication, which could be different because of time effects,

we estimate the counterfactuals, the returns if the anomaly had not been published, and compare

the returns with and without publication on the same time periods to control for the time effect.

Indeed, we show that the naive comparison of mean returns and pricing errors on the time periods

before and after publication is much more likely to find an effect as the sample mean returns are

in general lower on the latter part of the data set.

In our analysis we assume that the publication of anomalies does not depend on anomaly specific

characteristics S, i.e. P (Wit|S) = P (Wit). One reason is that most portfolio specific characteristics

are time-varying and hence cannot be used as a time-invariant covariate S. For example, the size

portfolio includes by construction only stocks with similar size characteristics. However, other firm

characteristics, e.g. their book-to-market ratio, are in general time-varying for this portfolio. It

33See (Schwert, 2003; McLean and Pontiff, 2016; Harvey et al., 2016; Chen and Zimmermann, 2018)
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is possible that the publication depends on the time-series pattern of certain strategies, but our

estimator in its current form only allows for cross-sectional, time-invariant variables to control for

differences in the treatment probability.34

Figure 6: The red and green boxes indicate the time periods used to estimate the factor model
before and after publication respectively.

We first estimate the latent factor model from the control returns before publication. We use

the data until the end of 2013 which is the last year for which we observe unpublished anomalies,

as indicated by the red box in Figure 6. This provides us with the common components of the

control before and after publication and the latent factor time-series from 1963 to 2013. Note,

that the latent factors are a weighted average of control returns. For the latter years, there are

only very few control return time-series which results in noisy time-series for the latent factors.35

In order to strike a balance between a precise estimation and using as much data as possible, our

benchmark analysis will test for treatment effects until the year 2010. We confirm that our results

are robust to changing the time horizon. Given the latent factor time series, we run regressions

on the treated return time-series to obtain the loadings and common components for the treated

returns after publication. Then, we calculate the mean returns or pricing errors on the time period

after publication until 2010 for the control and treated data as indicated by the green box in 6.

We apply Theorem 6 to obtain the test statistics for the mean return and pricing error effect. For

Z = ~1 we test whether the mean return is significantly affected by the publication. For Z = [~1, Fm],

where Fm is the observed excess return of the market factor, we test whether the pricing error, the

34We are currently working on extending our theoretical and empirical framework to include time-varying cross-
sectional features Sit. However this is beyond the scope of this paper.

35In fact, the latent factors from 2011 to 2013 are the weighted average of fewer than 11 control returns.
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coefficient corresponding to the intercept ~1, is significantly affected by the publication.

Figure 7 illustrates the counterfactual outcomes for three anomalies that experience a significant

publication effect in their mean returns. Figure 13 collects the corresponding results for the 13

anomalies that exhibit the statistically strongest treatment effect on their mean returns and the

five most prominent anomalies in the literature, namely size, value, investment, profitability, and

momentum. The blue line plots the common component of returns based on the latent factors

estimated on the control data. This means the blue line after the publication date are imputed

values that serve as the counterfactual outcome. The orange line are the cumulative returns of the

common component after publication based on the loadings estimated on the treated panel. The

green line are simply the cumulative returns of the observed price process after publication. Note,

that in an approximate factor model the risk premium should be fully captured by the common

component and indeed the orange line is very close to the green line but less wiggly as it averages

out some idiosyncratic noise. The large difference between the blue and orange lines confirms the

statistical finding that the publication significantly affects their mean returns.
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Figure 7: Publication effect: Cumulative returns of (in blue) control common component C̃ctrlit

before publication and counterfactual after publication, (in orange) treatment common component
C̃treatit after publication and (in green) observed Xit after publication. 10 latent factors.

Figure 8 shows the variation explained and the maximum Sharpe ratio of the SDF for different

number of factors on the control data.36 The marginal increase of the variation explained and the

maximum Sharpe ratio with more than 10 factors is very small. A factor model with 6 to 10 factors

seems to capture most of the information in this data set. If not stated otherwise we use 10 latent

factors.

36The Sharpe ratio of the SDF is the maximum Sharpe ratio obtained by mean-variance optimization of all the
estimated latent factors.
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Figure 8: Variation explained and the Sharpe ratio of the SDF for different number of factors on
the control data.

First, the majority of the anomaly portfolios have lower average returns and pricing errors after

publication. Figure 9 collects the publication effect on mean returns and CAPM pricing errors for

all anomalies for different horizons of the treatment effect. The left plots show the t-statistics, while

the right side has the non-normalized differences. The portfolios are sorted by their t-statistics for

the reference year 2010. Over 80% of the differences are positive, i.e. after publication, the anomaly

risk premium is more likely to decrease. The results are very robust to the choice of the final year

of the treatment effect and justify why we can focus our analysis on the year 2010. Importantly, for

the 20% negative differences, the values are economically much smaller than the positive values and

all statistically insignificant for a 95% significance level. On the other hand, the positive publication

effect is economically large with a monthly return ranging from 0.5 to 3%.

Second, only around 14% of the publication effects are statistically significant. Using a one-sided

95% test shows that only 15 anomalies are statistically significantly affected by the publication,

which holds for the mean returns and pricing errors. Due to the multiple testing problem this

number has to be viewed as an upper bound. When correcting the critical value for multiple

testing, there are even fewer portfolios with a significant publication effect. This result is not

surprising as we are correctly taking into account the uncertainty in the estimation. The time

periods after publication are relatively short, while the mean estimation itself is known to have

high standard errors. In addition, there are relatively few control anomalies that have not been

published in the later part of the data set. Hence, it cannot be avoided that the counterfactual
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outcome is relatively noisy which further increases the variance of our test statistic. In summary,

because of the nature of the data, we show that the bar for classifying a publication effect as

significant has to be put quite high.
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Figure 9: Publication effect: Differences and corresponding t-statistics with the last year to test the
treatment effect ranging from 2010 to 2013. Portfolios are sorted by their t-statistics for differences
in mean returns in 2010 in descending order. Left panels show the t-statstics for differences in
means and pricing errors. Right panels show absolute differences in means and pricing errors.

Third, the pricing error and risk premium effects on the mean are very much aligned. The top

and bottom plots of Figure 9 are very close to each other. This is not surprising as the long-short

factors are constructed to be “market neutral”, and hence most of their mean returns should not

be explained by a market portfolio. Hence, most of our findings about mean returns directly carry

over to CAPM alphas.
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Figure 10: Publication effect. Left plot: Pricing error (CAPM alpha) t-statistics estimated on the
control (without publication) observations before publication (light blue), treated (with publication)
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when estimated before publication. Right plot: Naive treatment effect based on difference in mean
returns or pricing errors before and after publication (light blue and green line) and synthetic
control treatment effect using only observations after the publication (dark blue and black line).
Portfolios are sorted by their t-statistics for differences in mean returns in 2010 in descending order.
Red lines denote 1% and 5% critical values.

Fourth and importantly, a naive estimation of the publication effect leads to different and

misleading conclusions. Figure 10 contrasts our treatment effect with a simple comparison of mean

and pricing errors before and after publication without constructing a counterfactual. Note, that

comparing the sample mean of returns before and after publication can suggest a larger publication

effect if sample means are lower in the second part of the data, even for those anomalies that are

not published. This is exactly what happens in our case. The left plot in Figure 10 shows the

t-statistics for pricing errors based on the return date before publication. Not surprisingly, almost

all anomalies are significant as otherwise they would not have been published. The dark blue line

shows the result of the same regression but on the time periods after publication. Substantially

fewer anomalies are significant. However, the before publication returns are a bad control as they

neglect any time effects. In contrast, the green line depicting the results of the counterfactual, i.e.

pricing errors if the anomaly had not been published but calculated on the time periods after its

publication, is much lower. Note, that using the common component or observed returns for the

regression of the treated data give similar results. The right plots confirms that a naive estimation,
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that simply compares means and pricing errors before and after publication, would suggest that

more anomalies have a significant publication effect. The green and light blue line describe the

naive approach that has more spikes above the critical values than our approach. These spikes also

occur for very different anomalies compared to our approach. On a 1% confidence level the naive

approach would suggest a significant publication effect for three times more anomaly portfolios.
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Figure 11: Publication effect: t-statistics for 6 to 10 latent factors. The red dashed-line is the
critical value for a one-sided test of a negative publication effect. Results for the 13 anomalies with
the statistically largest effects and the 5 most prominent anomalies.
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Figure 12: Publication effect: Mean returns C̄ctrli and C̄treati and CAPM pricing errors βctrl
i,~1

and

βtreat
i,~1

under a 10-factor model. Results for the 13 anomalies with the statistically largest effects

and the 5 most prominent anomalies.

Fifth, we zoom in and present the detailed results for the 13 anomalies with the statistically

largest effect and the 5 most prominent anomalies. Figure 11 shows the t-statistics for 6 to 10 latent

factors spanning the SDF. It is apparent that both, the effect on mean returns and the pricing errors,

are robust to the choice of the number of latent factors. Importantly, for sufficiently many latent

factors neither of the “classical” anomalies size, value, profitability, investment, and momentum

is significantly affected by their publication. This suggests, that these anomalies represent the

systematic risk that requires a risk premium and which is part of the SDF. Some of the anomalies

whose risk premium disappear after publication are less “standard”, e.g. advertisement expenditure.
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This is suggestive that these were either arbitrage opportunities that were traded away by informed

investors or their detection was simply spurious.

Lastly, we highlight the distinction between statistical and economic significance. Figure 12

shows the mean returns and pricing errors for the same subset of anomalies as Figure 11. The

statistically significant portfolios also have economically significant differences ranging from 0.5

to 3% monthly returns. However, an economically large difference does not necessarily turn into

statistical significance when correctly accounting for the uncertainty. For example, the size portfolio

experiences an effect of around 0.5% which is insignificant because of its volatile time-series as shown

in Figure 13.

8 Conclusion

In this paper, we propose a method to estimate a latent factor model from partially observed

panel data. The estimation is based on an adjusted covariance matrix estimated from the partially

observed panel data. We derive the inference theory for the estimated factors, loadings, and common

components. The asymptotic variance of the estimators is larger than that from the fully observed

panel. In particular, there is an additional variance correction term in the asymptotic variance

compared with the fully observed panel. Based on the inferential theory, we construct a test for

the treatment effect for each unit at any time. In our empirical analysis of anomaly long-short

portfolios we find that around 14% of the portfolios returns are significantly reduced by academic

publication.

40



References

Abadie, A., Diamond, A., and Hainmueller, J. (2010). Synthetic control methods for compara-
tive case studies: Estimating the effect of california’s tobacco control program. Journal of the
American statistical Association, 105(490):493–505.

Abadie, A., Diamond, A., and Hainmueller, J. (2015). Comparative politics and the synthetic
control method. American Journal of Political Science, 59(2):495–510.

Aı̈t-Sahalia, Y. and Xiu, D. (2018). Principal component analysis of high-frequency data. Journal
of the American Statistical Association, pages 1–17.

Athey, S., Bayati, M., Doudchenko, N., Imbens, G., and Khosravi, K. (2018). Matrix completion
methods for causal panel data models. Technical report, National Bureau of Economic Research.

Athey, S. and Imbens, G. W. (2018). Design-based analysis in difference-in-differences settings with
staggered adoption. Technical report, National Bureau of Economic Research.

Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71(1):135–
171.

Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica, 77(4):1229–1279.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models.
Econometrica, 70(1):191–221.

Bai, J. and Ng, S. (2019). Matrix completion, counterfactuals, and factor analysis of missing data.
arXiv preprint arXiv:1910.06677.
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9 Appendix

9.1 Empirical Results
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Figure 13: Publication effect: Cumulative returns of 1. (blue) control common component C̃ctrlit

before publication and counterfactual after publication 2. (orange) treatment common component
C̃treatit after publication, 3. (green) observed Xit after publication. 10 latent factors.
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Acronym Description Authors Start Date Publication Cctrl − Ctreat Cctrl − Ctreat αctrl − αtreat αctrl − αtreat
t-stats mean t-stats mean

EarnSurp Earnings Surprise Foster et al 1963/07 1984 2.75 2.43 2.76 2.44
AdExp Advertising Expense Chan et al 1963/07 2001 2.70 0.74 2.75 0.75
PriceDelay Price delay Hou and Moskowitz 1963/07 2005 2.32 0.44 2.37 0.45
KZ Kaplan Zingales index Lamont et al 1963/07 2001 2.29 1.37 2.30 1.38
NOA Net Operating Assets Hirshleifer et al 1963/07 2004 2.17 1.01 2.15 1.00
GrSaleToGrInv Sales growth over inventory growth Abarbanell and Bushee 1963/07 1998 2.11 0.36 2.13 0.37
Accruals Accruals Sloan 1964/06 1996 2.09 0.37 2.06 0.36
RevenueSurprise Revenue Surprise Jegadeesh and Livnat 1963/07 2006 2.04 1.02 2.03 1.01
Tax Taxable income to income Lev and Nissim 1963/07 2004 2.03 0.89 2.10 0.92
ChFinLiab Change in financial liabilities Richardson et al 1963/07 2005 1.99 0.63 2.05 0.65
IndRetBig Industry return of big firms Hou 1963/07 2007 1.87 3.47 1.87 3.46
Seasonality Return Seasonality Heston and Sadka 1963/07 2008 1.75 1.63 1.75 1.63
RIO IdioRisk Inst Own and Idio Vol Nagel 1963/07 2005 1.74 1.43 1.76 1.44
AssetTurnover Asset Turnover Soliman 1963/07 2008 1.72 2.31 1.72 2.31
RD R&D over market cap Chan et al 1963/07 2001 1.67 1.10 1.67 1.11
DivOmit Dividend Omission Michaely Thaler Womack 1963/07 1995 1.60 0.49 1.57 0.48
ChNWC Change in Net Working Capital Soliman 1963/07 2008 1.59 0.64 1.59 0.64
GrGMToGrSales Gross Margin growth over sales growth Abarbanell and Bushee 1963/07 1998 1.54 0.35 1.58 0.36
Spinoff Spinoffs Cusatis et al 1963/07 1993 1.47 0.50 1.49 0.50
NetDebtPrice Net debt to price Penman Richardson Tuna 1963/07 2007 1.42 1.90 1.42 1.90
BM Book to market Fama and French 1963/07 1992 1.39 0.94 1.35 0.90
Mscore Mohanram G-score Mohanram 1964/01 2005 1.38 0.75 1.42 0.77
OperProf operating profits / book equity Fama and French 1963/07 2006 1.37 1.02 1.40 1.05
EarnSupBig Earnings surprise of big firms Hou 1963/07 2007 1.36 1.28 1.36 1.27
SurpriseRD Unexpected R&D increase Eberhart et al 1963/07 2004 1.35 0.59 1.33 0.59
Herf Industry concentration (Herfindahl) Hou and Robinson 1963/07 2006 1.34 0.83 1.34 0.82
CFPinc Cash flow to market Lakonishok et al 1963/07 1994 1.31 0.59 1.33 0.59
RoA earnings / assets Balakrishnan, Bartov, Faurel 1963/07 2010 1.29 3.51 1.24 3.86
GrSaleToGrOverhead Sales growth over overhead growth Abarbanell and Bushee 1963/07 1998 1.28 0.53 1.32 0.55
RIO Turnover Inst Own and Turnover Nagel 1963/07 2005 1.26 1.19 1.25 1.17
ChDeprToPPE Change in depreciation to gross PPE Holthausen and Larcker 1963/07 1992 1.25 0.27 1.25 0.27
ChInventory Inventory Growth Thomas and Zhang 1963/07 2002 1.23 0.31 1.24 0.31
BMent Enterprise component of BM Penman Richardson Tuna 1963/07 2007 1.20 0.61 1.20 0.61
SalesToPrice Sales-to-price Barbee et al 1963/07 1996 1.18 0.75 1.20 0.75
ChATurn Change in Asset Turnover Soliman 1963/07 2008 1.15 0.45 1.15 0.45
OperLeverage Operating Leverage Novy-Marx 1963/07 2010 1.10 1.99 1.01 2.11
BPEBM Leverage component of BM Penman Richardson Tuna 1963/07 2007 1.08 0.42 1.09 0.42

Table 2: Summary statistics of the anomaly portfolios (publication effect until 2010).
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Label Name Authors Start Date Publication Cctrl − Ctreat Cctrl − Ctreat αctrl − αtreat αctrl − αtreat
t-stats mean t-stats mean

IdioRisk Idiosyncratic risk Ang et al 1963/07 2006 1.04 1.52 1.07 1.57
Mom1813 Momentum-Reversal De Bondt and Thaler 1963/07 1985 0.88 0.60 0.74 0.50
InvToRev Investment Titman et al 1963/07 2004 0.87 0.27 0.85 0.27
SalesGr Revenue Growth Rank Lakonishok et al 1963/07 1994 0.87 0.19 0.93 0.20
CompDebtI Composite debt issuance Lyandres Sun Zhang 1963/07 2008 0.73 0.35 0.74 0.35
ChInvestInd Change in capital inv (ind adj) Abarbanell and Bushee 1963/07 1998 0.72 0.18 0.75 0.19
DivInit Dividend Initiation Michaely Thaler Womack 1963/07 1995 0.72 0.17 0.81 0.19
Mom1m Short term reversal Jegedeesh 1963/07 1989 0.72 0.59 0.74 0.62
EffFrontier Efficient frontier index Nguyen and Swanson 1963/07 2009 0.61 1.19 0.51 1.05
ExchSwitch Exchange Switch Dharan and Ikenberry 1963/07 1995 0.57 0.22 0.49 0.19
Tangibility Tangibility Hahn and Lee 1963/07 2009 0.56 1.61 0.62 1.76
ChLTI Change in long-term investment Richardson et al 1963/07 2005 0.53 0.13 0.53 0.13
RIO BM Inst Own and BM Nagel 1963/08 2005 0.49 0.41 0.48 0.41
ShareIs5 Share issuance (1 year) Pontiff and Woodgate 1963/07 2008 0.46 0.45 0.46 0.45
Mom12m Momentum (12 month) Jegadeesh and Titman 1963/07 1993 0.45 0.49 0.53 0.58
IntanEP Intangible return Daniel and Titman 1963/07 2006 0.44 0.25 0.42 0.24
High52 52 week high George and Hwang 1963/07 2004 0.43 0.45 0.47 0.49
MaxRet Maximum return over month Bali et al 1963/07 2010 0.42 1.03 0.38 1.05
Size Size Banz 1963/07 1981 0.39 0.47 0.29 0.36
RoE net income / book equity Haugen and Baker 1963/07 1996 0.36 0.15 0.41 0.17
EP Earnings-to-Price Ratio Basu 1963/07 1977 0.35 0.26 0.27 0.20
Mom36m Long-run reversal De Bondt and Thaler 1963/07 1985 0.33 0.26 0.25 0.19
ChPM Change in Profit Margin Soliman 1963/07 2008 0.33 0.18 0.33 0.18
OrderBacklog Order backlog Rajgopal et al 1970/12 2003 0.31 0.34 0.44 0.49
EarnCons Earnings Consistency Alwathainani 1963/07 2009 0.28 0.26 0.32 0.31
CFPcash Operating Cash flows to price Desai, Rajgopal, and Venkatachalam 1964/06 2004 0.27 0.18 0.32 0.22
ChNCOA Change in Noncurrent Operating Assets Soliman 1963/07 2008 0.25 0.15 0.25 0.15
Mom6m Momentum (6 month) Jegadeesh and Titman 1963/07 1993 0.25 0.15 0.26 0.16
Price Price Blume and Husic 1963/07 1972 0.23 0.65 0.17 0.47
ChCOA Change in current operating assets Richardson et al 1963/07 2005 0.15 0.06 0.14 0.05
IntanCFP Intangible return Daniel and Titman 1963/07 2006 0.15 0.09 0.13 0.08
MomRev Momentum and LT Reversal Chan and Kot 1963/07 2006 0.13 0.17 0.12 0.16
Leverage Market leverage Bhandari 1963/07 1988 0.12 0.11 0.05 0.04
ChBE Sustainable Growth Lockwood and Prombutr 1963/07 2010 0.10 0.16 0.11 0.19
NetPayoutYield Net Payout Yield Boudoukh et al 1963/07 2007 0.07 0.09 0.08 0.09
DivYield Dividend Yield Naranjo et al 1963/07 1998 0.01 0.01 -0.01 -0.01

Table 3: Summary statistics of the anomaly portfolios (publication effect until 2010).
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Label Name Authors Start Date Publication Cctrl − Ctreat Cctrl − Ctreat αctrl − αtreat αctrl − αtreat
t-stats mean t-stats mean

IntanBM Intangible return Daniel and Titman 1967/06 2006 -0.01 -0.01 -0.01 -0.01
VolumeTrend Volume Trend Haugen and Baker 1963/07 1996 -0.01 0.00 -0.04 -0.02
ChCol Change in current operating liabilities Richardson et al 1963/07 2005 -0.03 -0.01 -0.03 -0.01
ProfitMargin Profit Margin Soliman 1963/07 2008 -0.03 -0.04 -0.03 -0.04
DolVol Past trading volume Brennan Chordia Subrahmanyam 1963/07 1998 -0.06 -0.03 -0.08 -0.04
GrCAPX Change in capex (two years) Anderson and Garcia-Feijoo 1963/07 2006 -0.08 -0.04 -0.06 -0.03
VarCF Cash-flow variance Haugen and Baker 1963/07 1996 -0.15 -0.09 -0.15 -0.10
Beta CAPM beta Fama and MacBeth 1963/07 1973 -0.17 -0.46 -0.19 -0.53
BetaSquared CAPM beta squred Fama and MacBeth 1963/07 1973 -0.18 -0.50 -0.21 -0.58
VolSD Volume Variance Chordia Roll Subrahmanyam 1963/07 2001 -0.23 -0.11 -0.20 -0.09
SinStock Sin Stock (selection criteria) Hong and Kacperczyk 1963/07 2009 -0.33 -0.80 -0.25 -0.59
IntanSP Intangible return Daniel and Titman 1963/07 2006 -0.40 -0.26 -0.40 -0.26

Illiquidity AmihudÃ¿s illiquidity Amihud 1963/07 2002 -0.44 -0.21 -0.44 -0.20
ZeroTrade Days with zero trades Liu 1963/07 2006 -0.47 -0.40 -0.45 -0.38
VolMkt Volume to market equity Haugen and Baker 1963/07 1996 -0.49 -0.30 -0.47 -0.28
IndMom Industry Momentum Grinblatt and Moskowitz 1963/07 1999 -0.53 -0.31 -0.54 -0.31
GrLTNOA Growth in Long term net operating assets Fairfield et al 1963/07 2003 -0.60 -0.13 -0.76 -0.16
StdTurnover Turnover volatility Chordia Roll Subrahmanyam 1963/07 2001 -0.63 -0.42 -0.61 -0.41
SEO Public Seasoned Equity Offerings Loughran and Ritter 1970/01 1995 -0.68 -0.35 -0.62 -0.31
ZScore Altman Z-Score Dichev 1963/07 1998 -0.71 -0.44 -0.72 -0.45
AccrualsBM Book-to-market and accruals Bartov and Kim 1967/05 2004 -0.77 -0.77 -0.79 -0.79
MomVol Momentum and Volume Lee and Swaminathan 1963/07 2000 -0.94 -0.72 -0.94 -0.72
ShareIs1 Share issuance (5 year) Daniel and Titman 1963/07 2006 -1.00 -0.45 -0.98 -0.43
ChBEtoA Richardson et al 1963/07 2005 -1.08 -0.56 -1.11 -0.57
PayYield Payout Yield Boudoukh et al 1963/07 2007 -1.22 -0.91 -1.23 -0.91
AssetGrowth Asset Growth Cooper et al 1963/07 2008 0.00 0.00 0.00 0.00
BetaTailRisk Tail risk beta Kelly and Jiang 1963/07 2014 0.00 0.00 0.00 0.00
ChTax Change in Taxes Thomas and Zhang 1963/07 2011 0.00 0.00 0.00 0.00
DivInd Dividends Hartzmark and Salomon 1963/07 2013 0.00 0.00 0.00 0.00
EntMult Enterprise Multiple Loughran and Wellman 1963/07 2011 0.00 0.00 0.00 0.00
GrAdExp Growth in advertising expenses Lou 1967/01 2014 0.00 0.00 0.00 0.00
GrEmp Employment growth Bazdresch, Belo and Lin 1963/07 2014 0.00 0.00 0.00 0.00
GrossProf gross profits / total assets Novy-Marx 1963/07 2013 0.00 0.00 0.00 0.00
InterMom Intermediate Momentum Novy-Marx 1963/07 2012 0.00 0.00 0.00 0.00
NumEarnIncrease Number of consecutive earnings increases Loh and Warachka 1963/07 2012 0.00 0.00 0.00 0.00
OrgCap Organizational Capital Eisfeldt and Papanikolaou 1964/12 2013 0.00 0.00 0.00 0.00
PctAcc Percent Operating Accruals Hafzalla et al 1964/06 2011 0.00 0.00 0.00 0.00

Table 4: Summary statistics of the anomaly portfolios (publication effect until 2010).
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9.2 Simulation Results
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Figure 14: Randomly Missing: Histograms of estimated standardized factors. The normal density
function is superimposed on the histograms. P (Wit = 1|λi) = p for any i and t, where p = 0.5 and
0.9 in the simulation. The caption in the sub-figures denotes a tuple of (N,T, p,Wit).

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a) (250, 500, 0.5, 0)

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) (250, 500, 0.9, 0)

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(c) (500, 250, 0.5, 0)

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(d) (500, 250, 0.9, 0)

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(e) (250, 500, 0.5, 1)

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(f) (250, 500, 0.9, 1)

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(g) (500, 250, 0.5, 1)

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(h) (500, 250, 0.9, 1)

Figure 15: Randomly Missing: Histograms of estimated standardized loadings. The normal density
function is superimposed on the histograms. P (Wit = 1|λi) = p for any i and t, where p = 0.5 and
0.9 in the simulation. The caption in the sub-figures denotes a tuple of (N,T, p,Wit).
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Figure 16: Staggered Adoption: Histograms of estimated standardized factors. The normal density
function is superimposed on the histograms. The caption in the sub-figures denotes a tuple of
(N,T,Wit).
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Figure 17: Staggered Adoption: Histograms of estimated standardized loadings. The normal den-
sity function is superimposed on the histograms. The caption in the sub-figures denotes a tuple of
(N,T,Wit).
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Figure 18: Staggered Adoption: Histograms of estimated standardized common components. The
normal density function is superimposed on the histograms. The caption in the sub-figures denotes
a tuple of (N,T,Wit).
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9.3 Proofs

Denote Wt ∈ RN×1 as the t-th column in W and W i ∈ RT×1 as the i-th row in W ; Similarly
et ∈ RN×1 as the t-th column in e and ei ∈ RT×1 as the i-th row in e.

Plug X̃ = (ΛF treat)�W + e�W into(
1

NT
(X̃X̃>)�Q(−1)

)
Λ̃ = Λ̃Ṽ ,

and right multiply Ṽ −1 on both side, we have

1

NT

(
(W � (ΛF>) +W � e)

(
(FΛ>)�W> + e> �W>

))
Λ̃Ṽ −1 = Λ̃.

Note that (i, j)-th entry in (W �(ΛF>))((FΛ>)�W>), (W �(ΛF>))(e>�W>), (W �e)((FΛ>)�
W>) and (W � e)(e> �W>) have(

(W � (ΛF>))((FΛ>)�W>)
)
ij

= λ>i F
>diag(Wi �Wj)Fλj(

(W � (ΛF>))(e> �W>)
)
ij

= e>i diag(Wi �Wj)Fλj(
(W � e)((FΛ>)�W>)

)
ij

= λ>i F
>diag(Wi �Wj)ej(

(W � e)(e> �W>)
)
ij

= e>i diag(Wi �Wj)ej

Then, we have

λ̃j =
1

NT
Ṽ −1

[
N∑
i=1

λ̃iλ
>
i F
>diag(Wi �Wj)Fλj/qij +

N∑
i=1

λ̃ie
>
i diag(Wi �Wj)Fλj/qij

+
N∑
i=1

λ̃iλ
>
i F
>diag(Wi �Wj)ej/qij +

N∑
i=1

λie
>
i diag(Wi �Wj)Fej/qij

]
(24)

Denote Hj = 1
NT Ṽ

−1
∑N

i=1 λ̃iλ
>
i F
>diag(Wi �Wj)F/qij .

From Equation (24), we have

λ̃j −Hjλj = Ṽ −1

(
1

N

N∑
i=1

λ̃iγ(i, j) +
1

N

N∑
i=1

λ̃iζij +
1

N

N∑
i=1

λ̃iηij +
1

N

N∑
i=1

λ̃iξij

)
,

where γ(i, j) = E
[

1
|Qij |

∑
t∈Qij eitejt

]
and

γ̃(i, j) =
1

|Qij |
∑
t∈Qij

E[eitejt] = γ(i, j)

ζij =
1

|Qij |
∑
t∈Qij

eitejt − γ̃(i, j)

ηij =
1

|Qij |
∑
t∈Qij

λ>i Ftejt

ξij =
1

|Qij |
∑
t∈Qij

λ>j Fteit.
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from Tqij = T · |Qij |/T = |Qij |. From Lemma 7, we have
∥∥∥Ṽ −1

∥∥∥ = Op(1); From 1
N Λ̃>Λ̃ = Ir, we

have 1
N

∑N
i=1

∥∥∥λ̃i∥∥∥2
= Op(1); From Assumption 2.1 that for all i and j, 1

|Qij |
∑

t∈Qij FtF
>
t

P−→ ΣF .

We have for any j

‖Hj‖2 ≤
∥∥∥Ṽ −1

∥∥∥2
(

1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2
)(

1

N

N∑
i=1

‖λi‖2
) 1

N

T∑
i=1

∥∥∥∥∥∥ 1

|Qij |
∑
t∈Qij

FtF
>
t

∥∥∥∥∥∥
2 = Op(1).

Furthermore, denote H = 1
NT Ṽ

−1Λ̃>ΛF>F and δNT = min(
√
N,
√
T ) for the rest of the

appendix.

Lemma 3. Under Assumptions 1-4, we have for some M1 <∞, and for all N and T ,

1. 1
N

∑N
i=1

∑N
i=1 γ(i, j)2 ≤M1, where γ(i, j) = E

[
1
|Qij |

∑
t∈Qij eitejt

]
2. E

[(
1√
|Qij |

λ>i
∑

t∈Qij Ftejt

)2
]
≤M1

Proof. 1. Let ρ(i, j) = γ(i, j)/
[
E
[

1
|Qij |

∑
t∈Qij e

2
it

]
E
[

1
|Qij |

∑
t∈Qij e

2
jt

]]1/2

= γ(i, j)/
[
γ|Qij |(i, i)γ|Qij |(j, j)

]1/2
, where γ|Qij |(i, i) = E

[
1
|Qij |

∑
t∈Qij e

2
it

]
. Then |ρ(i, j)| ≤ 1

and ρ(i, j)2 ≤ |ρ(i, j)|. From Assumption 2.3.2, we have |γ|Qij |(i, i)| ≤ M and |γ|Qij |(j, j)| ≤
M . We then have for all i and j,
γ(i, j)2 = γ|Qij |(i, i)γ|Qij |(j, j)ρ(i, j)2 ≤M |γ|Qij |(i, i)γ|Qij |(j, j)|

1/2|ρ(i, j)| = M |γ(i, j)| and

1

N

N∑
i=1

N∑
j=1

γ(i, j)2 =
M

N

N∑
i=1

N∑
j=1

|γ|Qij |(i, i)γ|Qij |(j, j)|
1/2|ρ(i, j)|

≤ M

N

N∑
i=1

N∑
j=1

|γ(i, j)| ≤M2,

where the last inequality follows from Assumption 2.3.2.

2.

E

 1√
|Qij |

λ>i
∑
t∈Qij

Ftejt

2 ≤ E[‖λi‖2] · E

 1√
|Qij |

∑
t∈Qij

Ftejt

2 ≤ λ2
M

by Assumption 2 and the independence of Λ with F and e.

Lemma 4. Under Assumptions 1-4, let δ2
NT = min(N,T ), we have

δ2
NT

 1

N

N∑
j=1

∥∥∥λ̃j −Hjλj

∥∥∥2

 = Op(1), (25)

where Hj = 1
NT Ṽ

−1
∑N

i=1 λ̃iλ
>
i F
>diag(Wi �Wj)F/qij.
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Proof of Lemma 4. From Cauchy-Schwartz inequality, we have
∥∥∥λ̃j −Hjλj

∥∥∥2
≤ 4

∥∥∥Ṽ −1
∥∥∥2

(aj+bj+

cj + dj), where

aj =
1

N2

∥∥∥∥∥
N∑
i=1

λ̃iγ(i, j)

∥∥∥∥∥
2

bj =
1

N2

∥∥∥∥∥
N∑
i=1

λ̃iζij

∥∥∥∥∥
2

cj =
1

N2

∥∥∥∥∥
N∑
i=1

λ̃iηij

∥∥∥∥∥
2

dj =
1

N2

∥∥∥∥∥
N∑
i=1

λ̃iξij

∥∥∥∥∥
2

From 1
N2

∥∥∥∑N
i=1 λ̃iγ(i, j)

∥∥∥2
≤
(

1
N

∑N
i=1

∥∥∥λ̃i∥∥∥2
)(

1
N

∑N
i=1 γ(i, j)2

)
, we have

1

N

N∑
j=1

aj ≤
1

N

(
1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2
) 1

N

N∑
i=1

N∑
j=1

γ(i, j)2

 = Op

(
1

N

)
,

by Lemma 3.1.
Similar as the proof of Theorem 1 in Bai and Ng (2002),

1

N

N∑
j=1

bj ≤

(
1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2
) 1

N2

N∑
i=1

N∑
l=1

 N∑
j=1

ζijζlj

21/2

,

E
[∑N

j=1 ζijζlj

]2
≤ N2 maxi,j E|ζij |4 and

E|ζij |4 =
1

|Qij |2
E

∣∣∣∣∣∣ 1

|Qij |1/2
∑
t∈Qij

(eitejt − E[eitejt])

∣∣∣∣∣∣
4

≤ M

|Qij |2
= Op

(
1

T 2

)
by Assumption 2.3.5. Thus, 1

N

∑N
j=1 bj = Op

(
1
T

)
.

Note that

cj =
1

N2

∥∥∥∥∥
N∑
i=1

λ̃iηij

∥∥∥∥∥
2

=
1

N2

∥∥∥∥∥∥ 1

T

N∑
i=1

λ̃iλ>i ∑
t∈Qij

Ftejt/q̃ij

∥∥∥∥∥∥
2

≤

(
1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2
) 1

N

N∑
i=1

1

|Qij |

 1√
|Qij |

λ>i
∑
i∈Qij

Ftejt

2 = Op

(
1

T

)
by Lemma 3.2. Then 1

N

∑N
j=1 cj = Op

(
1
T

)
. Similarly, we can show 1

N

∑N
j=1 dj = Op

(
1
T

)
. Then

1

j

N∑
j=1

∥∥∥λ̃j −Hjλj

∥∥∥2
≤ 4

∥∥∥Ṽ −1
∥∥∥2 1

N

N∑
j=1

(aj + bj + cj + dj) = Op

(
1

T

)
+Op

(
1

N

)
.
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Lemma 5. Under Assumptions 1-4, Hj −H = Op (1/δNT )

Proof. Note that

Hj −H =
1

NT
Ṽ −1

N∑
i=1

λ̃iλ
>
i

 1

|Qij |
∑
t∈Qij

FtF
>
t −

1

T

T∑
t=1

FtF
>
t


From Assumption 2.1, 1

|Qij |
∑

t∈Qij FtF
>
t − 1

T

∑T
t=1 FtF

>
t = ΣF+Op

(
1√
|Qij |

)
−
(

ΣF +Op

(
1√
T

))
=

Op

(
1√
T

)
= Op

(
1

δNT

)
from Assumption 1, Assumption 2.1 and limT→∞ |Qij |/T > 0. Ṽ = Op(1)

follows from Lemma 7 and Ṽ −1 = Op(1) follows from Assumptions 1 and 2. λ̃i = Op(1) by
construction and λi = Op(1) from Assumption 2.2. Thus,

Hj −H = Op(1/δNT )

Proof of Theorem 1.

1

N

N∑
j=1

∥∥∥λ̃j −Hλj∥∥∥2
≤ 1

N

N∑
j=1

∥∥∥λ̃j −Hjλj

∥∥∥2
+

1

N

N∑
j=1

‖(Hj −H)λj‖2

The first term 1
N

∑N
j=1

∥∥∥λ̃j −Hjλj

∥∥∥2
= Op

(
1/δ2

NT

)
from Lemma 4. The second term

1
N

∑N
j=1 ‖(Hj −H)λj‖2 = Op

(
1/δ2

NT

)
following Hj−H = Op (1/δNT ) from Lemma 5 and Assump-

tion 2.2. Thus,

1

N

N∑
j=1

∥∥∥λ̃j −Hλj∥∥∥2
= Op

(
1

δ2
NT

)
.

Lemma 6. Assume Assumptions 1-4 hold, we have

1. 1
N

∑N
i=1 λ̃iγ(i, j) = Op

(
1√

NδNT

)
, where γ(i, j) = E

[
1
|Qij |

∑
t∈Qij eitejt

]
2. 1

N

∑N
i=1 λ̃iζij = Op

(
1√
TδNT

)
3. 1

N

∑N
i=1 λ̃iηij = Op

(
1√
T

)
4. 1

N

∑N
i=1 λ̃iξij = Op

(
1√
TδNT

)
Proof. 1.

1

N

N∑
i=1

λ̃iγ(i, j) =
1

N

N∑
i=1

(λ̃i −Hλi)γ(i, j) +
1

N

N∑
i=1

Hλiγ(i, j)

Since

E

∥∥∥∥∥
N∑
i=1

λiγ(i, j)

∥∥∥∥∥ ≤ E
N∑
i=1

‖λiγ(i, j)‖ =
N∑
i=1

E[‖λi‖]γ(i, j)] = O(1)
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by Assumptions 2 and 3.2, we have 1
N

∑N
i=1Hλiγ(i, j) = Op(1). Furthermore,∥∥∥∥∥ 1

N

N∑
i=1

(λ̃i −Hλi)γ(i, j)

∥∥∥∥∥ ≤

(
1

N

N∑
i=1

∥∥∥λ̃i −Hλi∥∥∥2
)1/2

1√
N

(
N∑
i=1

γ(i, j)2

)1/2

= Op

(
1

δNT

)
1√
N
O(1) = Op

(
1√

NδNT

)
followed from

∑T
s=1 γN (s, t)2 ≤M

∑T
s=1 |γN (s, t)| by the argument in the proof of Lemma 3,

Assumptions 1 and 3.2.

2.

1

N

N∑
i=1

λ̃iζij =
1

N

N∑
i=1

(λ̃i −Hλi)ζij +
1

N

N∑
i=1

Hλiζij

Note that

1

N

N∑
i=1

ζ2
ij ≤

1

N

N∑
i=1

1

|Qij |

 1√
|Qij |

∑
t∈Qij

(eitejt − E[eitejt])

2

= Op

(
1

T

)

from Assumption 2.3.5. Thus,∥∥∥∥∥ 1

N

N∑
i=1

(λ̃i −Hλi)ζij

∥∥∥∥∥ ≤
(

1

N

N∑
i=1

∥∥∥λ̃i −Hλi∥∥∥2
)1/2

1√
N

(
1

N

N∑
i=1

ζ2
ij

)1/2

= Op

(
1√
TδNT

)
.

Furthermore,

1
N

∑N
i=1Hλiζij = 1√

N
H 1√

N

∑N
i=1

1√
|Qij |

1√
|Qij |

∑
t∈Qij λi (eitejt − E[eitejt]) = Op

(
1√
NT

)
following H = Op(1), Assumption 2.2 (‖λi‖ = Op(1)), and Assumption 3.1.

3.

1

N

N∑
i=1

λ̃iηij =
1

N

N∑
i=1

(λ̃i −Hiλi)ηij +
1

N

N∑
i=1

Hλiηij

Note that

1

N

N∑
i=1

Hλiηij =
1

N

N∑
i=1

Hλiλ
>
i

1

|Qij |
∑
t∈Qij

Ftejt = Op

(
1√
T

)
following Assumptions 2.2 and 2.4. Furthermore,

∥∥∥ 1
N

∑N
i=1(λ̃i −Hiλi)ηij

∥∥∥ ≤ ( 1
N

∑N
i=1

∥∥∥λ̃i −Hiλi

∥∥∥2
)1/2

1√
N

(∑N
i=1 η

2
ij

)1/2
= Op

(
1√
TδNT

)
followed from Lemma 3.2.
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4.

1

N

N∑
i=1

λ̃iξij =
1

NT

N∑
i=1

λ̃iλ
>
j F
>diag(Wi �Wj)ei/qij =

1

NT

N∑
i=1

λ̃ie
>
i diag(Wi �Wj)Fλj/qij

=
1

NT

N∑
i=1

(λ̃i −Hλi)e>i diag(Wi �Wj)Fλj/qij +
1

NT

N∑
i=1

Hλie
>
i diag(Wi �Wj)Fλj/qij .

Note that∥∥∥∥∥ 1

NT

N∑
i=1

(λ̃i −Hiλi)e
>
i diag(Wi �Wj)Fλj/qij

∥∥∥∥∥
≤

(
max

1√
|Qij |

)(
1

N

N∑
i=1

∥∥∥(λ̃i −Hλi)
∥∥∥2
)1/2

 1

N

N∑
i=1

∥∥∥∥∥∥ 1√
|Qij |

∑
t∈Qij

Fteit

∥∥∥∥∥∥
1/2

‖λj‖

= Op

(
1√
T

)
Op

(
1

δNT

)
Op(1) = Op

(
1√
TδNT

)
followed from Theorem 1, Assumption 2.2, and Assumption 2.4. Furthermore,∥∥∥∥∥ 1

NT

N∑
i=1

Hλie
>
i diag(Wi �Wj)Fλj/qij

∥∥∥∥∥
≤ ‖H‖

(
max

1√
N |Qij |

)∥∥∥∥∥∥ 1√
N

N∑
i=1

1√
|Qij |

∑
t∈Qij

λiF
>
t eit

∥∥∥∥∥∥ ‖λj‖ = Op

(
1√
NT

)
,

following H = Op(1), Assumption 2.2 and Assumption 3.2.

Lemma 7. Assume Assumptions 1 and 2 hold. As T,N →∞,

1. 1
T Λ̃>

(
1
NT (X̃X̃>)�Q(−1)

)
Λ̃ = Ṽ

P−→ V ,

2. 1
NT 2 Λ̃>

((
(ΛF>)�W

) (
(FΛ>)�W>

)
�Q(−1)

)
F̃ = Ṽ

P−→ V

3. 1
NT 2 Λ̃>

(
ΛF>FΛ>

)
Λ̃ = Ṽ

P−→ V

where V = diag(v1, v2, · · · , vr) are the eigenvalues of ΣΛΣF .

Proof of Lemma 7. The proof is similar to the proof of (R12) on page 1175 in Stock and Watson

(2002a). Let γ denoteN×1 vector and let Γ = {γ|γ>γ/N = 1}, R(γ) = 1
NT 2γ

>
(

(X̃X̃>)�Q(−1)
)
γ,

R̃(γ) = 1
NT 2γ

> (((ΛF>)�W
) (

(FΛ>)�W>
)
�Q(−1)

)
γ and R∗(γ) = 1

NT 2γ
>ΛF>FΛ>γ. We fol-

low similar steps as Stock and Watson (2002a) and can sequentially show

(R2) supγ∈Γ
1

NT 2γ
> (((W � e)(e> �W>)

)
�Q(−1)

)
γ

P−→ 0

(R5) supγ∈Γ
1

NT 2 |γ>
((

((W � e)(FΛ>)�W>)
)
�Q(−1)

)
γ| P−→ 0

(R6) supγ∈Γ |R(γ)− R̃(γ)| P−→ 0 and supγ∈Γ |R(γ)−R∗(γ)| P−→ 0
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Proof. We have the decomposition

R(γ)−R∗(γ) = R(γ)− R̃(γ) + R̃(γ)−R∗(γ)

For R(γ)− R̃(γ), we have

R(γ)− R̃(γ) = 1
NT 2γ

>
((

(W � e)(e> �W>)
)
� 1/Π̃

)
γ + 2

NT 2γ
> ((((W � e)(FΛ>)�W>)

)
�Q(−1)

)
γ

and

sup
γ∈Γ
|R(γ)− R̃(γ)| ≤ sup

γ∈Γ

1

NT 2
|γ>

((
(W � e)(e> �W>)

)
�Q(−1)

)
γ|

+ sup
γ∈Γ

2

NT 2
|γ>

((
(W � e)((FΛ>)�W>)

)
�Q(−1)

)
γ| → 0.

For R̃(γ)−R∗(γ), we have for any γ ∈ Γ

R̃(γ)−R∗(γ) =
1

N2

N∑
i=1

N∑
j=1

γiγjλ
>
i

 1

|Qij |
∑
t∈Qij

FtF
>
t −

1

T

T∑
t=1

FtF
>
t

λj

≤

 1

N2

N∑
i=1

N∑
j=1

γ2
i γ

2
j

1/2 1

N2

N∑
i=1

N∑
j=1

(
λ>i Ξijλj

)2

1/2

=

 1

N2

N∑
i=1

N∑
j=1

(
λ>i Ξijλj

)2

1/2

where Ξij = 1
|Qij |

∑
t∈Qij FtF

>
t − 1

T

∑T
t=1 FtF

>
t and γ>γ/N = 1 for any γ ∈ Γ. Since Ξij =

op(1) for all (i, j) and ‖λi‖ = Op(1) for all i, λ>i Ξijλj = op(1). Then
(
λ>i Ξijλj

)2
= op(1) and

1
N2

∑N
i=1

∑N
j=1

(
λ>i Ξijλj

)2
= op(1). Thus,

sup
γ∈Γ
|R̃(γ)−R∗(γ)| P−→ 0

and
sup
γ∈Γ
|R(γ)−R∗(γ)| P−→ 0.

(R7) | supγ∈ΓR(γ)− supγ∈Γ R̃(γ)| P−→ 0 and | supγ∈ΓR(γ)− supγ∈ΓR
∗(γ)| P−→ 0

(R8) supγ∈ΓR
∗(γ)

P−→ v1, where v1 is the largest eigenvalue of ΣFΣΛ

(R9) supγ∈ΓR(γ)
P−→ v1

(R10) Let Λ̃1 = arg supγ∈ΓR(γ); then R̃(Λ̃1)
P−→ v1 and R∗(Λ̃1)

P−→ v1

(R11) Let Λ̃1 denote the first column of Λ̃ and let S1 = sign(Λ̃1,Λ1), meaning S1 = 1 if Λ̃
>
1 Λ1 ≥ 0

and S1 = −1 if Λ̃
>
1 Λ1 < 0. Then S1Λ̃

>
1 Λ1(Λ>Λ/N)−1/2 P−→ l>1 , where l1 = (1, 0, · · · , 0)>.
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(R12) Suppose that the N×r matrix Λ̃ is formed as the r ordered eigenvectors of (X�W )(X̃>�W>)

normalized as Λ̃>Λ̃/N = Ir. Let S denote S = diag(sign(Λ̃>Λ)). Then SΛ̃>Λ(Λ>Λ/N)−1/2 P−→
Ir.

(R13) For j = 1, 2, · · · , r, R(Λ̃j)
P−→ vj , R̃(Λ̃j)

P−→ vj and R∗(Λ̃j)
P−→ vj .

Proof. The result for R(Λ̃1)
P−→ v1, R̃(Λ̃1)

P−→ v1 and R∗(Λ̃1)
P−→ v1 is given in (R9) and (R10).

The results for the other columns mimic the steps in (R8)-(R10), for the other principal
components, that is, by maximizing R(·) and R∗(·) sequentially using orthonormal subspaces
of Γ.

Note that Lemma 7.1 has

1

NT 2
Λ̃>
(

(X̃X̃>)�Q(−1)
)

Λ̃ = diag(R(Λ̃1), · · · , R(Λ̃r))→ diag(v1, · · · vr)

from (R13); Lemma 7.2 has

1

NT 2
Λ̃>
(((

W � (ΛF>)
)(

(FΛ>)�W>
))
�Q(−1)

)
Λ̃ = diag(R̃(Λ̃1), · · · , R̃(Λ̃r))→ diag(v1, · · · vr)

from (R13); Lemma 7.3 has

1

NT 2
Λ̃>
(

ΛF>FΛ>
)

Λ̃ = diag(R∗(Λ̃1), · · · , R∗(Λ̃r))
P−→ diag(v1, · · · vr)

from (R13).

Lemma 8. Under Assumptions 1 and 2,

1. 1
N Λ̃>Λ

P−→ Q, where Q is invertible, Q = V 1/2ΥΣ
−1/2
F , diagonal entries of V = diag(v1, v2, · · · , vr)

are the eigenvalues of Σ
1/2
F ΣΛΣ

1/2
F , and Υ is the corresponding eigenvector matrix such that

Υ>Υ = I.

2. H−1 P−→ Q>, where H = 1
NT Ṽ

−1Λ̃>ΛF>F .

Proof. 1. The proof is similar to the proof of Proposition 1 in Bai (2003). Multiple Σ̃Λ̃ = Λ̃Ṽ

by 1
N

(
F>F
T

)1/2
Λ, then we have

1

N

(
F>F

T

)1/2

Λ>Σ̃Λ̃ =

(
F>F

T

)1/2
Λ>Λ̃

N
Ṽ

and then (
F>F

T

)1/2
Λ>Λ

N

(
F>F

T

)
Λ>Λ̃

N
+ dNT =

(
F>F

T

)1/2
Λ>Λ̃

N
Ṽ ,

where dNT = 1
N

(
F>F
T

)1/2
Λ>d̃NT Λ̃ and d̃NT has

d̃NT,ij = λ>i

(
1

|Qij |
F>diag(Wi �Wj)F −

1

T
F>F

)
λj +

1

|Qij |
e>i diag(Wi �Wj)Fλj

+
1

|Qij |
λ>i F

>diag(Wi �Wj)ej +
1

|Qij |
e>i diag(Wi �Wj)ej
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From Assumption 2.1, 1
|Qij |F

>diag(Wi �Wj)F − 1
T F
>F = Op

(
1

δNT

)
and then

1

N
Λ>d̃NT = Op

(
1

δNT

)
following Lemma 6. The remaining steps to show 1

N Λ̃>Λ
P−→ Q are exactly the same as that

in Proposition 1 in Bai (2003).

2. Note that

H =
1

NT
Ṽ −1Λ̃>ΛF>F

P−→ V −1QΣF = V −1V 1/2ΥΣ
−1/2
F ΣF = V −1/2ΥΣ

1/2
F = (Q>)−1

Proof of Theorem 2. By Lemma 6, we have

λ̃j −Hjλj = Op

(
1√

NδNT

)
+Op

(
1√
TδNT

)
+Op

(
1√
T

)
+Op

(
1√
TδNT

)
.

When
√
T/N → 0, the limiting distribution is determined by the third term. Thus,

√
T (λ̃j −Hjλj) = Ṽ −1 1

N

N∑
i=1

√
T

|Qij |
Hiλiλ

>
i

1√
|Qij |

∑
t∈Qij

Ftejt + op(1)

= Ṽ −1 1

N
H

N∑
i=1

√
T

|Qij |
λiλ
>
i

1√
|Qij |

∑
t∈Qij

Ftejt + op(1)

following Hi −H = Op

(
1

δNT

)
. From Assumption 3.3,

1

N

N∑
i=1

√
T

|Qij |
λiλ
>
i

1√
|Qij |

∑
t∈Qij

Ftejt
d−→ N(0,Φj).

From Lemma 8, H → (Q−1)> and from Lemma 7, Ṽ −1 P−→ V . From Slutsky’s theorem,

Ṽ −1 1

N
H

N∑
i=1

√
T

|Qij |
λiλ
>
i

1√
|Qij |

∑
t∈Qij

Ftejt
d−→ N(0, V −1(Q−1)>ΦjQ

−1V −1).

A consistent estimate for the asymptotic variance V −1(Q−1)>ΦjQ
−1V −1 is shown in Lemma 9.

Furthermore,

√
T (λ̃j −Hλj) =

√
T (λ̃j −Hjλj) +

√
T (Hj −H)λj + op(1).

From Lemma 5, Hj − H = Op

(
1√
T

)
. Then

√
T (Hj − H)λj = Op(1) from Assumption 2.2 and

√
T (Hj −H)λj contributes to the asymptotic distribution of λ̃j .

From the definition of H = 1
NT Ṽ

−1Λ̃>ΛF>F and Hj = 1
N Ṽ

−1
∑N

i=1 λ̃iλ
>
i

1
|Qij |

∑
t∈Qij FtF

>
t , we

can write Hj −H as Hj −H = 1
NT Ṽ

−1
∑N

i=1

∑T
t=1 yit,j λ̃iλ

>
i FtF

>
t , where yit,j =

T−|Qij |
|Qij | for t ∈ Qij ,

yit,j = −1 for t 6∈ Qij and
∑N

i=1

∑T
t=1 yit,j = 0.
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Note that

1

NT

N∑
i=1

T∑
T=1

yit,j λ̃iλ
>
i FtF

>
t =

1

NT

N∑
i=1

T∑
t=1

yit,jHλiλ
>
i FtF

>
t︸ ︷︷ ︸

I

+
1

NT

N∑
i=1

T∑
t=1

yit,j(λ̃i −Hλi)λ>i FtF>t︸ ︷︷ ︸
II

For the second term II, we have

II ≤

(
1

N

N∑
i=1

∥∥∥λ̃i −Hλi∥∥∥2
)1/2

 1

N

N∑
i=1

∥∥∥∥∥
(

1

T

T∑
t=1

yit,jFtF
>
t

)
λj

∥∥∥∥∥
2
1/2

= Op(1)Op

(
1

δNT

)
Op

(
1√
T

)
= Op

(
1

δ2
NT

)

following Theorem 1 and 1
T

∑T
t=1 yit,jFtF

>
t = Op

(
1√
|Qij |

)
= Op

(
1√
T

)
. Thus, the second term is

smaller than the first term.
From Assumption 3.5,

1

N
√
T

N∑
i=1

T∑
t=1

yit,jλiλ
>
i FtF

>
t

d−→ N(0,ΞF,j).

From Slutsky’s theorem,

1

N
√
T

N∑
i=1

T∑
t=1

yit,jλiλ
>
i FtF

>
t λj

d−→ N
(

0, (λ>j ⊗ I)ΞF,j(λj ⊗ I)
)
.

and

1

N
√
T
Ṽ −1H

N∑
i=1

T∑
t=1

yit,jλiλ
>
i FtF

>
t λj

d−→ N
(

0, V −1(Q−1)>(λ>j ⊗ I)ΞF,j(λj ⊗ I)Q−1V −1
)
.

Lemma 10 shows a consistent estimator for the asymptotic variance V −1(λ>j ⊗ I)ΞF,j(λj ⊗ I)V −1.

Furthermore,
√
T (λ̃j − Hjλj) and

√
T (Hj − H)λj are asymptotic independent because the

randomness of
√
T (λ̃j − Hjλj) comes from Ftejt while the randomness of

√
T (Hj − H)λj comes

from yit,j λ̃iλ
>
i FtF

>
t . Then we have

√
T (λ̃j −Hλj)

d−→ N(0, V −1(Q−1)>ΦjQ
−1V −1︸ ︷︷ ︸

Γλj,1

+V −1(Q−1)>(λ>j ⊗ I)ΞF,j(λj ⊗ I)Q−1V −1︸ ︷︷ ︸
Γλj,2

)

The plug-in estimators of Γλj ,1 and Γλj ,2, denoted as Γ̃λj ,1 and Γ̃λj ,2, are provided in Lemmas 9

and 10 respectively. Let Γ̃λj = Γ̃λj ,1 + Γ̃λj ,2 From Slusky’s Theorem,

√
T Γ̃
−1/2
λj

(λ̃j −Hλj)
d−→ N(0, Ir)
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Lemma 9. Assume there are finitely many nonzeros in each row of Σej = E[eje
T
j ] and we know

the set Ωej of nonzero indices in Σej . Under the assumptions of Theorem 2 we have

Γ̃λj ,1 = AV ar(
√
T (λ̃j −Hjλj)) + op(1),

where

Γ̃λj ,1 =
T

N2
Ṽ −1

N∑
i=1

N∑
l=1

λ̃iλ̃
>
i

 1

|Qij ||Qlj |
∑

s∈Qij ,t∈Qlj ,(s,t)∈Ωej

F̃sF̃
>
t ẽjsẽjt

 λ̃lλ̃
>
l Ṽ
−1

and ẽit = Xit − λ̃>i F̃t for the observed Xit.

Proof. ẽit = Xit− λ̃>i F̃t is a consistent estimator for eit for (i, t) ∈ {(i, t) : Wit = 1} because F̃t and

λ̃i are consistent estimators for (H>)−1Ft and Hλi following Theorems 2 and 3. Recall

√
T (λ̃j −Hjλj) = Ṽ −1 1

N

N∑
i=1

√
T

|Qij |
Hiλiλ

>
i

1√
|Qij |

∑
t∈Qij

Ftejt + op(1).

Note that Xit is observed for t ∈ Qij so ẽit is a consistent estimator for eit for t ∈ Qij . Then for
each i and l, a consistent estimator for the asymptotic covariance between 1√

|Qij |

∑
t∈Oij (H

>)−1Ftejt

and 1√
|Qlj |

∑
t∈Olj (H

>)−1Ftejt is

1

|Qij ||Qlj |
∑

s∈Qij ,t∈Qlj ,(s,t)∈Ωej

F̃sF̃
>
t ẽjsẽjt.

Together with λ̃i to be the consistent estimator for Hiλi and Hλi, a consistent estimator for the
asymptotic variance of

√
N(λ̃i −Hiλi) is

Γ̃λj ,1 =
T

N2
Ṽ −1

N∑
i=1

N∑
l=1

λ̃iλ̃
>
i

 1

|Qij ||Qlj |
∑

s∈Qij ,t∈Qlj ,(s,t)∈Ωej

F̃sF̃
>
t ẽjsẽjt

 λ̃lλ̃
>
l Ṽ
−1

Lemma 10. Under the Assumptions in Theorem 2 and FtF
>
t and λiλ

>
i are ergodic in mean, we

have

Γ̃λj ,2 = AV ar

(
1√
TN

Ṽ −1
N∑
i=1

T∑
t=1

yit,jHλiλ
>
i FtF

>
t λj

)
+ op(1),

where Γ̃λj ,2 = 1
NT 2 Ṽ

−1
[
Ã1 + Ã2 + Ã3 + Ã4

]
Ṽ −1 with

Ã1 =
(∑N

i=1

∑T
t=1 y

2
it,j

)(
1
NT

∑N
i=1

∑T
t=1 λ̃iλ̃

>
i F̃tF̃

>
t λ̃j λ̃

>
j F̃tF̃

>
t λiλ̃

>
i

)
,

Ã2 =


(∑T

t=1

∑N
i=1

∑
l 6=i yit,jylt,j

)(
1
T

∑T
t=1 F̃tF̃

>
t λ̃j λ̃

>
j F̃tF̃

>
t

)
, ifλi is independent∑T

t=1

∑N
i=1

∑
l 6=i yit,jylt,j

(
1

T (N−|ρ|)
∑T

s=1

∑min(N,N−ρ)
m=max(1,1−ρ), where ρ=l−i λ̃mλ̃

>
mF̃sF̃

>
s λ̃j λ̃

>
j F̃sF̃

>
s λ̃m+ρλ̃

>
m+ρ

)
, otherwise

Ã3 =


(∑T

t=1

∑
s 6=t
∑N

i=1 yit,jyis,j

)(
1
N

∑N
m=1 λ̃mλ̃

>
m

(
1
T

∑T
u=1 F̃uF̃

>
u

)
λ̃j λ̃

>
j

(
1
T

∑T
u=1 F̃uF̃

>
u

)
λ̃mλ̃

>
m

)
, ifFt is independent∑T

t=1

∑
s 6=t
∑N

i=1 yit,jyis,j

(
1

N(T−|τ |)
∑N

m=1

∑min(T,T−τ)
u=max(1,1−τ), where τ=s−t λ̃mλ̃

>
mF̃uF̃

>
u λ̃j λ̃

>
j F̃u+τ F̃

>
u+τλmλ̃

>
m

)
, otherwise
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Ã4 =



(∑T
t=1

∑
s 6=t
∑N

i=1

∑
l 6=i yit,jyls,j

)(
1
T

∑T
t=1 F̃tF̃

>
t

)
λ̃j λ̃

>
j

(
1
T

∑T
t=1 F̃tF̃

>
t

)
ifFt, λi are independent∑T

t=1

∑
s6=t
∑N

i=1

∑
l 6=i yit,jyls,j

(
1

T−|τ |
∑min(T,T−τ)

u=max(1,1−τ), where τ=s−t F̃uF̃
>
u λ̃j λ̃

>
j F̃u+τ F̃

>
u+τ

)
ifλi is independent∑T

t=1

∑
s6=t
∑N

i=1

∑
l 6=i yit,jyls,j

(
1

N−|ρ|
∑min(N,N−ρ)

m=max(1,1−ρ), where ρ=j−i λ̃mλ̃
>
m

(
1
T

∑T
u=1 F̃uF̃

>
u

)
λ̃j λ̃

>
j

(
1
T

∑T
u=1 F̃uF̃

>
u

)
λ̃m+ρλ

>
m+ρ

)
ifFt is independent∑T

t=1

∑
s6=t
∑N

i=1

∑
l 6=i yit,jyls,j

(
1

(N−|ρ|)(T−|τ |)
∑min(N,N−ρ)

m=max(1,1−ρ), where ρ=j−i
∑min(T,T−τ)

u=max(1,1−τ), where τ=s−t λ̃mλ̃
>
mF̃uF̃

>
u λ̃j λ̃

>
j F̃u+τ F̃

>
u+τλm+ρλ

>
m+ρ

)
otherwise

Proof. We have

Cov

(
1√
TN

Ṽ −1
N∑
i=1

T∑
t=1

yit,jHλiλ
>
i FtF

>
t λj ,

1√
TN

Ṽ −1
N∑
i=1

T∑
t=1

yit,jHλiλ
>
i FtF

>
t λj

)

=
1

TN2
Ṽ −1 [A1 +A2 +A3 +A4 −A5] Ṽ −1,

where

A1 =

N∑
i=1

T∑
t=1

y2
it,jE

[
Hλiλ

>
i E
[
FtF

>
t λjλ

>
j FtF

>
t

]
λiλ
>
i H

>
]

A2 =
N∑
i=1

∑
l 6=i

T∑
t=1

yit,jylt,jE
[
Hλiλ

>
i E
[
FtF

>
t λjλ

>
j FtF

>
t

]
λlλ
>
l H

>
]

A3 =

N∑
i=1

T∑
t=1

∑
s 6=t

yit,jyis,jE
[
Hλiλ

>
i E
[
FtF

>
t λjλ

>
j FsF

>
s

]
λiλ
>
i H

>
]

A4 =
N∑
i=1

∑
l 6=i

T∑
t=1

∑
s 6=t

yit,jyls,jE
[
Hλiλ

>
i E
[
FtF

>
t λjλ

>
j FsF

>
s

]
λlλ
>
l H

>
]

A5 =

(
N∑
i=1

T∑
t=1

yit,jE
[
Hλiλ

>
i

]
E
[
FtF

>
t

]
λj

)(
N∑
i=1

T∑
t=1

yit,jE
[
Hλiλ

>
i

]
E
[
FtF

>
t

]
λj

)>

First note that F̃t is a consistent estimator for (H>)−1Ft and λ̃i is a consistent estimator for
Hλi. If we plug in F̃s for Fs and λ̃i for λi, all the rotation matrices canceled out in A1 to A5.

Since FsF
>
s is ergodic in mean and λiλ

>
i is ergodic in mean, we have 1

T

∑T
s=1HFsF

>
s −

E
[
HFsF

>
s

]
= op(1), 1

N

∑N
i=1 λiλ

>
i −E

[
λiλ
>
i

]
= op(1), 1

T

∑T
t=1 FtF

>
t λjλ

>
j FtF

>
t −E[FtF

>
t λjλ

>
j FtF

>
t ] =

op(1), 1
NT

∑N
i=1

∑T
t=1Hλiλ

>
i FtF

>
t λjλ

>
j FtF

>
t λiλ

>
i H

> − E
[
λiλ
>
i FtF

>
t λjλ

>
j FtF

>
t λiλ

>
i H

>
]

= op(1).

When Ft is independent, E[FtF
>
t λjλ

>
j FsF

>
s |λj ] = E[FtF

>
t ]λjλ

>
j E[FsF

>
s ]. When λi is indepen-

dent, E[Hλiλ
>
i E[FtF

>
t λjλ

>
j FsF

>
s ]λlλ

>
l H

>] = E[Hλiλ
>
i ]E[FtF

>
t λjλ

>
j FsF

>
s ]E[λlλ

>
l H

>]. When Ft
is independent and λi is independent,
E[Hλiλ

>
i E[FtF

>
t λjλ

>
j FsF

>
s |λj ]λlλ>l H>] = E[Hλiλ

>
i ]E[FtF

>
t ]λjλ

>
j E[FtF

>
t ]E[λlλ

>
l H

>].
When Ft is independent,

1
N

∑N
i=1Hλiλ

>
i

(
1
T

∑T
t=1 FtF

>
t

)
λjλ

>
j

(
1
T

∑T
t=1 FtF

>
t

)
λiλ
>
i H

>−E[Hλiλ
>
i E[FtF

>
t ]λjλ

>
j E[FtF

>
t ]λiλ

>
i H

>] =

op(1).
When λi is dependent,
1

T (N−|ρ|)
∑T

s=1

∑min(N,N−ρ)
m=max(1,1−ρ), where ρ=l−i λ̃mλ̃

>
mF̃sF̃

>
s λ̃j λ̃

>
j F̃sF̃

>
s λ̃m+ρλ̃

>
m+ρ

−E
[
Hλiλ

>
i E
[
FtF

>
t λjλ

>
j FtF

>
t

]
λlλ
>
l H

>
]

= op(1).
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When Ft is dependent, 1
N(T−|τ |)

∑N
m=1

∑min(T,T−τ)
u=max(1,1−τ), where τ=s−t λ̃mλ̃

>
mF̃uF̃

>
u λ̃j λ̃

>
j F̃u+τ F̃

>
u+τλmλ̃

>
m−

E
[
Hλiλ

>
i E
[
FtF

>
t λjλ

>
j FsF

>
s

]
λiλ
>
i H

>
]

= op(1).

When λi is independent and Ft is dependent, 1
T−|τ |

∑min(T,T−τ)
u=max(1,1−τ), where τ=s−t F̃uF̃

>
u λ̃j λ̃

>
j F̃u+τ F̃

>
u+τ

−E
[
Hλiλ

>
i E
[
FtF

>
t λjλ

>
j FsF

>
s

]
λlλ
>
l H

>
]

= op(1).

When λi is dependent and Ft is independent,
1

N−|ρ|
∑min(N,N−ρ)

m=max(1,1−ρ), where ρ=j−i λ̃mλ̃
>
m

(
1
T

∑T
u=1 F̃uF̃

>
u

)
λ̃j λ̃

>
j

(
1
T

∑T
u=1 F̃uF̃

>
u

)
λ̃m+ρλ

>
m+ρ

−E
[
Hλiλ

>
i E
[
FtF

>
t λjλ

>
j FsF

>
s

]
λlλ
>
l H

>
]

= op(1).

When λi is dependent and Ft is dependent,
1

(N−|ρ|)(T−|τ |)
∑min(N,N−ρ)

m=max(1,1−ρ), where ρ=j−i
∑min(T,T−τ)

u=max(1,1−τ), where τ=s−t λ̃mλ̃
>
mF̃uF̃

>
u λ̃j λ̃

>
j F̃u+τ F̃

>
u+τλm+ρλ

>
m+ρ−

E
[
Hλiλ

>
i E
[
FtF

>
t λjλ

>
j FsF

>
s

]
λlλ
>
l H

>
]

= op(1)

This completes the proof for Lemma 10 for all scenarios.

Lemma 11. Under Assumptions 1-3, we have

1. 1
N

∑
i∈Ot

1
P (Wit=1|S)

(
λ̃i −Hiλi

)
eit = Op(1/δ

2
NT )

2. 1
N

∑
i∈Ot

1
P (Wit=1|S)

(
λ̃i −Hλi

)
eit = Op(1/δ

2
NT )

3. 1
N

∑N
i=1

(
λ̃i −Hλi

)
λ>i = op(1/δNT )

4. 1
N

∑N
i=1

(
λ̃i −Hλi

)
λ̃>i = op(1/δNT )

Proof. 1. The proof is very similar as Lemma B.1 in Bai (2003).

1

N

∑
i∈Ot

1

P (Wit = 1|S)

(
λ̃i −Hiλi

)
eit

= Ṽ −1

[
1

N2

∑
i∈Ot

1

P (Wit = 1|S)

N∑
l=1

λ̃lγ(l, i)eit +
1

N2

∑
i∈Ot

1

P (Wit = 1|S)

N∑
l=1

λ̃lζlieit

=
1

N2

∑
i∈Ot

1

P (Wit = 1|S)

N∑
l=1

λ̃lηlieit +
1

N2

∑
i∈Ot

1

P (Wit = 1|S)

N∑
l=1

λ̃lξlieit

]
= Ṽ −1 [I + II + III + IV]

Since p ≤ P (Wit = 1|S) by Assumption 1.3 (then 1
P (Wit=1|S) ≤

1
p), I = Op(1/δ

2
NT ), II =

Op(1/δ
2
NT ), III = Op(1/δ

2
NT ) and IV = Op(1/δ

2
NT ) can be shown similar as Bai (2003) given

Lemma 3 and under Assumptions 1-3.

2.

1

N

∑
i∈Ot

1

P (Wit = 1|S)

(
λ̃i −Hλi

)
eit =

1

N

∑
i∈Ot

1

P (Wit = 1|S)

(
λ̃i −Hiλi

)
eit

+
1

N

∑
i∈Ot

1

P (Wit = 1|S)
(Hi −H)λieit
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The first term is op(1/δNT ) by Lemma 11.1. By Assumption 8, the second term is Op(1/δ
2
NT ).

Thus, 1
N

∑
i∈Ot

1
P (Wit=1|S)

(
λ̃i −Hλi

)
eit = Op(1/δ

2
NT ).

3.

1

N

N∑
i=1

(
λ̃i −Hλi

)
λ>i =

1

N

N∑
i=1

(
λ̃i −Hiλi

)
λ>i +

1

N

N∑
i=1

(Hi −H)λiλ
>
i

1
N

∑N
i=1

(
λ̃i −Hiλi

)
λ>i = Op(1/δ

2
NT ) can be shown similar as Bai (2003) Lemma B.2 and

under Assumptions 1-3.

1

N

N∑
i=1

(Hi −H)λiλ
>
i = Ṽ −1 1

N2

N∑
i=1

N∑
l=1

λ̃lλ
>
l

 1

|Qli|
∑
s∈Qli

FsF
>
s −

1

T

T∑
s=1

FsF
>
s

λiλi

= Ṽ −1 1

N2

N∑
i=1

N∑
l=1

(λ̃l −Hλl)λ>l

 1

|Qli|
∑
s∈Qli

FsF
>
s −

1

T

T∑
s=1

FsF
>
s

λiλi

+Ṽ −1 1

N2

N∑
i=1

N∑
l=1

Hλlλ
>
l

 1

|Qli|
∑
s∈Qli

FsF
>
s −

1

T

T∑
s=1

FsF
>
s

λiλi,

where the second term is op(1/
√
T ) by Assumption 7. The first term is Op(1/δ

2
NT ) by 1 and

Assumption 3.7.

4. From Lemma 11.3 and Theorem 1

Proof of Theorem 3. Decomposing

F̃t =
1

N

N∑
i=1

1

P (Wit = 1|S)
XitWitλ̃i =

1

N

∑
i∈Ot

1

P (Wit = 1|S)
Xitλ̃i,

we have

F̃t = 1
N

∑
i∈Ot

1
P (Wit=1|S)(λ>i Ft + eit)λ̃i

=
(

1
N

∑
i∈Ot

1
P (Wit=1|S) λ̃iλ

>
i

)
Ft + 1

N

∑
i∈Ot

1
P (Wit=1|S) λ̃ieit

=
(

1
N

∑
i∈Ot

1
P (Wit=1|S) λ̃iλ

>
i

)
Ft + 1

N

∑
i∈Ot

1
P (Wit=1|S)Hλieit + 1

N

∑
i∈Ot

1
P (Wit=1|S)

(
λ̃i −Hλi

)
eit

where the last term is op(1/δNT ) by Lemma 11.1. From Assumption 3.4, 1
N

∑
i∈Ot

1
P (Wit=1|S)λieit

d−→
N(0,Γt). From Slutsky’s theorem and Lemma 8,

1

N

∑
i∈Ot

1

P (Wit = 1|S)
Hλieit

d−→ N(0, (Q−1)>ΓtQ
−1).

A consistent estimate for the asymptotic variance (Q−1)>ΓtQ
−1 is shown in Lemma 12.

Denote Gt = 1
N

∑
i∈Ot

1
P (Wit=1|S) λ̃iλ

>
i . We have

F̃t − (H−1)>Ft =
(
F̃t −GtFt

)
+

(
Gt −

1

N
Λ̃>Λ

)
Ft +

(
1

N
Λ̃>Λ− (H−1)>

)
Ft
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Note that Λ̃>Λ̃/N = Ir, we have

1

N
Λ̃>Λ− (H−1)> =

1

N
Λ̃>
(

ΛH> − Λ̃
)

(H−1)> = op

(
1

δNT

)
from Lemma 11.3.

Note that

Gt −
1

N
Λ̃>Λ =

1

N

∑
i∈Ot

1

P (Wit = 1|S)
λ̃iλ
>
i −

1

N

N∑
i=1

λ̃iλ
>
i =

1

N

N∑
i=1

vi,tλ̃iλ
>
i ,

where vi,t = 1
P (Wit=1|S) − 1 for i ∈ Ot and vi,t = −1 for i 6∈ Ot. Note that

1

N

N∑
i=1

vi,tλ̃iλ
>
i =

1

N

N∑
i=1

vi,tHλiλ
>
i︸ ︷︷ ︸

I

+
1

N

N∑
i=1

vi,t

(
λ̃i −Hλi

)
λ>i︸ ︷︷ ︸

II

For the second term II, we have∥∥∥∥∥ 1

N

N∑
i=1

vi,t

(
λ̃i −Hλi

)
λ>i

∥∥∥∥∥ ≤

(
1

N

N∑
i=1

vi,t

∥∥∥λ̃i −Hλi∥∥∥2
)1/2(

1

N

N∑
i=1

vi,t ‖λi‖2
)1/2

= Op

(
1

δNT

)
Op

(
1√
N

)
= Op

(
1

δ2
NT

)
from Cauchy-Schwarz inequality, Theorem 2, Assumption 1.4 and Assumption 3.2.

Thus, the first term I is the leading term in 1
N

∑N
i=1 vi,tλ̃iλ

>
i . From Assumption 3.6, 1√

N

∑N
i=1 vi,tλiλ

>
i

d−→
N(0,ΘΛ,t). From Slutsky’s theorem,

1√
N

N∑
i=1

vi,tλiλ
>
i Ft

d−→ N(0, (F>t ⊗ I)ΘΛ,t(Ft ⊗ I))

and

1√
N
H

N∑
i=1

vi,tλiλ
>
i Ft

d−→ N(0, (Q−1)>(F>t ⊗ I)ΘΛ,t(Ft ⊗ I)Q−1)

A consistent estimator for the asymptotic variance of (Q−1)>ΘΛ,tQ
−1 is shown in Lemma 13.√

N(F̃t−GtFt) and
√
N(Gt− (H>)−1)Ft are asymptotic independent because the randomness

of
√
N(F̃t−GtFt) comes from the time series average of Hiλieit while the randomness of

√
T (Gt−

(H>)−1)Ft comes from vi,tλ̃iλ
>
i . Then, we have

√
N(F̃t − (H−1)>Ft)

d−→ N(0, (Q−1)>ΓtQ
−1︸ ︷︷ ︸

ΘFt,1

+ (Q−1)>(F>t ⊗ I)ΘΛ,t(Ft ⊗ I)Q−1︸ ︷︷ ︸
ΘFt,2

).

The plug-in estimators of ΘFt,1 and ΘFt,2, denoted as Θ̃Ft,1 and Θ̃Ft,2, are provided in Lemmas 12

and 13 respectively. Let Θ̃Ft = Θ̃Ft,1 + Θ̃Ft,2.
From Slusky’s Theorem,

√
NΘ̃

−1/2
Ft

(F̃t − (H>)−1Ft)
d−→ N(0, Ir)

64



Lemma 12. Assume there are finitely many nonzeros in each row of Σet = E[ete
T
t ] and we know

the set Ωet of nonzero indices in Σet. Under the assumptions in Theorem 3 we have

Θ̃Ft,1 = AV ar(
√
N(F̃t −GtFt)) + op(1),

where

Θ̃Ft,1 =
1

N

∑
i∈Ot,l∈Ot,(i,l)∈Ωet

1

P̃ (Wit = 1|Λ)P̃t(Wlt = 1|Λ,Ft−1)
λ̃iλ̃
>
l ẽitẽlt,

ẽit = X̃it − λ̃>i F̃t for observed Xit and P̃ (Wit = 1|S) is a consistent estimate for P (Wit = 1|S).

Proof. If Xit is observed, ẽit is a consistent estimator for eit following the same reasoning as Lemma
9. Recall √

N(F̃t −GtFt) =
1√
N

∑
i∈Ot

1

P (Wit = 1|S)
Hiλieit + op(1).

λ̃i is a consistent estimator for Hiλi, then a consistent estimator for the asymptotic variance of
1√
N

∑
i∈Ot

1
P (Wit=1|S)Hiλieit is

1

N

∑
i∈Ot,l∈Ot,(i,l)∈Ωet

1

P̃ (Wit = 1|Λ,Ft−1)P̃ (Wlt = 1|Λ,Ft−1)
λ̃iλ̃
>
l ẽitẽlt,

where P̃ (Wit = 1|S) is a consistent estimate for P (Wit = 1|S).

Lemma 13. Under the same assumptions in Theorem 3, if FtF
>
t and λiλ

>
i are ergodic in mean,

we have

Θ̃Ft,2 = AV ar

(
1√
N

N∑
i=1

vi,tHλiλ
>
i Ft

)
+ op(1),

where Θ̃Ft,2 = 1
N

(
B̃1 + B̃2

)
with B̃1 =

(∑N
i=1 v

2
i,t

)(
1
N

∑N
i=1 λ̃iλ̃

>
i F̃tF̃

>
t λ̃iλ̃

>
i

)
and

B̃2 =


(∑N

i=1

∑
l 6=i vi,tvl,t

)
F̃tF̃

>
t , ifλi is independent(∑N

i=1

∑
l 6=i vi,tvl,t

)(
1

N−|ρ|
∑min(N,N−ρ)

m=max(1,1−ρ), where ρ=l−i λ̃mλ̃
>
mF̃tF̃

>
t λ̃m+ρλ̃

>
m+ρ

)
, otherwise

Proof. We have

Cov

(
1√
N

N∑
i=1

vi,tHλiλ
>
i Ft,

1√
N

N∑
i=1

vi,tHλiλ
>
i Ft|Ft

)
=

1

N
(B1 +B2) ,

where

B1 =

N∑
i=1

v2
i,tE[Hλiλ

>
i FtF

>
t λiλ

>
i H

>|Ft]

B2 =
N∑
i=1

∑
l 6=i

vi,tvl,tE[Hλiλ
>
i FtF

>
t λlλ

>
l H

>|Ft]

For termB1, we can consistently estimate E[Hλiλ
>
i FtF

>
t λiλ

>
i H

>|Ft] by 1
N

∑N
i=1 λ̃iλ̃

>
i F̃tF̃

>
t λ̃iλ̃

>
i .
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For term B2, we separate the case that λi is independent from the case that λi is dependent.
When λi is independent, E[Hλiλ

>
i FtF

>
t λlλ

>
l H

>|Ft] = E[Hλiλ
>
i ]FtF

>
t E[λiλ

>
i H

>]. Since λiλ
>
i

is ergodic in mean, we have F̃tF̃
>
t − E[Hλiλ

>
i FtF

>
t λlλ

>
l H

>|Ft] = op(1).

If λi is dependent, we have 1
N−|ρ|

∑min(N,N−ρ)
m=max(1,1−ρ), where ρ=l−i λ̃mλ̃

>
mF̃tF̃

>
t λ̃m+ρλ̃

>
m+ρ

−E[Hλiλ
>
i FtF

>
t λlλ

>
l H

>|Ft] = op(1).

Proof of Theorem 4. From C̃it = λ̃>i F̃t and Cit = λ>i Ft, we have

C̃it − Cit = λ>i H
>(F̃t − (H>)−1Ft) + (λ̃i −Hλi)>F̃t + op(1/δNT )

The second term can be written as

(λ̃i −Hλi)>F̃t = (λ̃i −Hλi)>(H>)−1Ft + (λ̃i −Hλi)>(F̃t − (H>)−1Ft)

= (λ̃i −Hλi)>(H>)−1Ft + op(1/δNT )

Thus,
C̃it − Cit = λ>i H

>(F̃t − (H>)−1Ft) + (λ̃i −Hλi)>(H>)−1Ft + op(1/δNT ).

Following Theorem 3 in Bai (2003), we can show that H>H =
(

Λ>Λ
N

)−1
+Op

(
1

δ2
NT

)
. Then,

δNTλ
>
i H

>(F̃t − (H>)−1Ft) =
δNT
N

λ>i H
>H

(∑
i∈Ot

1

P (Wit = 1|S)
λieit +

N∑
i=1

vi,tλiλ
>
i Ft

)
+ op(1)

=
δNT
N

λ>i

(
Λ>Λ

N

)−1
(∑
i∈Ot

1

P (Wit = 1|S)
λieit +

N∑
i=1

vi,tλiλ
>
i Ft

)
+ op(1)

and

F>t H
−1(λ̃i −Hλi)

= δNT
T F>t

(
F>F
T

)−1 (
Λ>Λ̃
N

)−1
Ṽ Ṽ −1H

(
1
N

∑N
i=1 λiλ

>
i

1
|Qij |

∑
t∈Qij Ftejt + 1

NT

∑N
i=1

∑T
t=1 yit,jλiλ

>
i FtF

>
t

)
+ op(1)

= δNT
T F>t

(
F>F
T

)−1 (
Λ>Λ
N

)−1 (
1
N

∑N
i=1 λiλ

>
i

1
|Qij |

∑
t∈Qij Ftejt + 1

NT

∑N
i=1

∑T
t=1 yit,jλiλ

>
i FtF

>
t

)
+ op(1)

following
(

Λ>Λ̃
N

)−1
= H>+op(1) in Lemma 8. F̃t−(H>)−1Ft and λ̃i−Hλi are asymptotic indepen-

dent because the former is the average of cross-section random variables and 1
N

∑N
i=1 vi,tλ̃iλ

>
i with∑N

i=1 vi,t = 0 and the latter the average of time-series random variables and 1
NT

∑N
l=1

∑T
T=1 ylt,iλ̃lλ

>
l FtF

>
t

with
∑N

l=1

∑T
t=1 ylt,i = 0 . Then we have

δNT (C̃it − Cit)
d−→ N

(
0,
δ2
NT

N
λ>i Σ−1

Λ (Γt + (F>t ⊗ I)ΘΛ,t(Ft ⊗ I))Σ−1
Λ λi

+
δ2
NT

T
F>t Σ−1

F Σ−1
Λ (Φj + (λ>j ⊗ I)ΞF,j(λj ⊗ I))Σ−1

Λ Σ−1
F Ft

)
From Theorem 2, the plug-in consistent estimator for the asymptotic variance of δNT (λ̃i −Hλi) is
δ2
NT
T Γ̃λi . From Theorem 3, the plug-in consistent estimator for the asymptotic variance of δNT (F̃t−

(H>)−1Ft) is
δ2
NT
N Θ̃Ft . Together with F̃t to be the consistent estimator for (H>)−1Ft and λ̃i to be the
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consistent estimator for Hλi, the consistent estimator for th asymptotic variance of δNT (C̃it−Cit)
is

δ2
NT
T λ̃>i Θ̃Ft λ̃i +

δ2
NT
N F̃>t Γ̃λiF̃t. Then we have(

1

T
λ̃>i Θ̃Ft λ̃i +

1

N
F̃>t Γ̃λiF̃t

)−1/2

(C̃it − Cit)
d−→ N(0, 1).

Proof of Lemma 1. The average of common components 1
T−T0,i

∑T
t=T0,i+1

(
C̃it − Cit

)
has

1

T − T0,i

T∑
t=T0,i+1

(
C̃it − Cit

)
= λ>i H

> 1

T − T0,i

T∑
t=T0,i+1

(F̃t − (H>)−1Ft)

+(λ̃i −Hλi)>(H>)−1 1

T − T0,i

T∑
t=T0,i+1

Ft + op(1/δNT )

From Theorem 3,

√
N(F̃t − (H>)−1Ft) =

√
N(F̃t −GtFt) +

√
N(Gt − (H>)−1)Ft + op(1)

From Assumption 5.1, we have 1√
N(T−T0,i)

∑T
t=T0,i+1

∑
i∈Ot

1
P (Wit=1|S)λieit = op(1) and then

√
N

T − T0,i

T∑
t=T0,i+1

(F̃t −GtFt) = op(1)

From Assumption 5.2, we have
√
N

T−T0,i

∑T
t=T0,i+1

(
1
N

∑N
i=1

Witλiλ
>
i

P (Wit=1|S) −
1
N

∑N
i=1 λiλ

>
i

)
Ft

d−→ N(0,ΘΛ,i)

and then

√
N

T − T0,i

T∑
t=T0,i+1

(Gt − (H>)−1)Ft =
1√

N(T − T0,i)
H

T∑
t=T0,i+1

N∑
i=1

vi,tλiλ
>
i Ft + op(1)

d−→ N(0, (Q−1)>ΘΛ,iQ
−1)

From the proof of Theorems 2 and 4,

1√
T

(
1

T−T0,i

∑T
t=T0,i+1 Ft

)>
H−1(λ̃i −Hλi)

d−→ N
(

0, µ>FΣ−1
F Σ−1

Λ (Φj + (λ>j ⊗ I)ΞF,j(λj ⊗ I))Σ−1
Λ Σ−1

F µF

)
Following the same argument as Theorems 2-4, the asymptotic variance of λ>i H

>∑t1
t=t0+1(F̃t −

(H>)−1Ft) is asymptotic independent of the asymptotic variance of (λ̃i−Hλi)>(H>)−1
∑t1

t=t0+1 Ft.
Then we have

1

T − T0,i

T∑
t=T0,i+1

(
C̃it − Cit

)
d−→ N

(
0, λ>i Σ−1

Λ ΘΛ,iΣ
−1
Λ λi

+µ>FΣ−1
F Σ−1

Λ (Φj + (λ>j ⊗ I)ΞF,j(λj ⊗ I))Σ−1
Λ Σ−1

F µF

)
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Lemma 14. Under the same assumptions in Theorem 3 we have

Θ̃Λ,i = AV ar

 1√
N(T − T0,i)

T∑
t=T0,i+1

N∑
i=1

vi,tHλiλ
>
i Ft

+ op(1),

where Θ̃Λ,i = 1
N

(
B̃i,1 + B̃i,2

)
with

B̃i,1 = 1
(T−T0,i)2

∑T
t=T0,i+1

∑T
s=T0,i+1

∑N
i=1 vi,tvi,s

(
1
N

∑N
i=1 λ̃iλ̃

>
i F̃tF̃

>
s λ̃iλ̃

>
i

)
, and when λi is inde-

pendent,

B̃i,2 =
1

(T − T0,i)2

T∑
t=T0,i+1

T∑
s=T0,i+1

N∑
i=1

vi,tvi,sF̃tF̃
>
s ;

otherwise,

B̃i,2 =
1

(T − T0,i)2

T∑
t=T0,i+1

T∑
s=T0,i+1

N∑
i=1

vi,tvi,s

 1

N − |ρ|

min(N,N−ρ)∑
m=max(1,1−ρ), where ρ=l−i

λ̃mλ̃
>
mF̃tF̃

>
s λ̃m+ρλ̃

>
m+ρ


Proof. We have

Cov
(

1√
N(T−T0,i)

∑T
t=T0,i+1

∑N
i=1 vi,tHλiλ

>
i Ft,

1√
N(T−T0,i)

∑T
t=T0,i+1

∑N
i=1 vi,tHλiλ

>
i Ft|F

)
= 1

N (B1 +B2) ,

where

B1 =
1

(T − T0,i)2

T∑
t=T0,i+1

T∑
s=T0,i+1

N∑
i=1

vi,tvi,sE[Hλiλ
>
i FtF

>
s λiλ

>
i H

>|F ]

B2 =
1

(T − T0,i)2

T∑
t=T0,i+1

T∑
s=T0,i+1

N∑
i=1

∑
l 6=i

vi,tvl,sE[Hλiλ
>
i FtF

>
s λlλ

>
l H

>|F ]

For termB1, we can consistently estimate E[Hλiλ
>
i FtF

>
s λiλ

>
i H

>|F ] by 1
N

∑N
i=1 λ̃iλ̃

>
i F̃tF̃

>
s λ̃iλ̃

>
i .

For term B2, we separate the case that λi is independent from the case that λi is dependent.
When λi is independent, E[Hλiλ

>
i FtF

>
s λlλ

>
l H

>|F ] = E[Hλiλ
>
i ]FtF

>
s E[λiλ

>
i H

>]. Since λiλ
>
i

is ergodic in mean, we have F̃tF̃
>
s − E[Hλiλ

>
i FtF

>
s λlλ

>
l H

>|F ] = op(1).

If λi is dependent, we have 1
N−|ρ|

∑min(N,N−ρ)
m=max(1,1−ρ), where ρ=l−i λ̃mλ̃

>
mF̃tF̃

>
s λ̃m+ρλ̃

>
m+ρ

−E[Hλiλ
>
i FtF

>
s λlλ

>
l H

>|F ] = op(1).

Proof of Lemma 2. We can decompose the estimated loadings λ̃treati by

λ̃treati =

 T∑
t=T0,i+1

F̃tF̃
>
t

−1
T∑

t=T0,i+1

F̃tX
treat
it

=

 T∑
t=T0,i+1

F̃tF̃
>
t

−1
T∑

t=T0,i+1

F̃tF
>
t λ

treat
i +

 T∑
t=T0,i+1

F̃tF̃
>
t

−1
T∑

t=T0,i+1

F̃te
treat
it
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Denote the population and estimated factors from T0,i + 1 to T as F(T0,i+1):T , F̃(T0,i+1):T ∈
R(T−T0,i)×r From Theorem 3, for any t, F̃t − (H>)−1Ft = Op

(
1

δNT

)
. Then we have

1
T−T0,i

F̃>(T0,i+1):T F̃(T0,i+1):T = 1
T−T0,i

(
F(T0,i+1):TH

−1 +Op

(
1

δNT

))> (
F(T0,i+1):TH

−1 +Op

(
1

δNT

))
= 1

T−T0,i
(H>)−1F>(T0,i+1):TF(T0,i+1):TH

−1 +Op

(
1

δNT

)
From Assumption 2.1, 1

T−T0,i
FF>(T0,i+1):TFF(T0,i+1):T is invertible, thus,

(
1

T−T0,i
F̃>(T0,i+1):T F̃(T0,i+1):T

)−1
= H

(
1

T−T0,i
F>(T0,i+1):TF(T0,i+1):T

)−1
H> +Op

(
1

δNT

)
and for any t and s

F̃>t

(
1

T−T0,i
F̃>(T0,i+1):T F̃(T0,i+1):T

)−1
F̃s

=
(
FtH

−1 +Op

(
1

δNT

))(
H
(

1
T−T0,i

F>(T0,i+1):TF(T0,i+1):T

)−1
H> +Op

(
1

δNT

))(
(H>)−1Fs +Op

(
1

δNT

))
= F>t

(
1

T−T0,i
F>(T0,i+1):TF(T0,i+1):T

)−1
Fs +Op

(
1

δNT

)
(26)

We regress Xi,T0,i+1:T on F̃(T0,i+1):T to get λ̃treati , that is

λ̃treati =
(
F̃>(T0,i+1):T F̃(T0,i+1):T

)−1
F̃>(T0,i+1):TXi,T0,i+1:T

=
(
F̃>(T0,i+1):T F̃(T0,i+1):T

)−1
F̃>(T0,i+1):TF(T0,i+1):Tλ

treat
i

+
(
F̃>(T0,i+1):T F̃(T0,i+1):T

)−1
F̃>(T0,i+1):T ei,T0,i+1:T ,

where the second term is the estimation error. Then for C̃treatit = F̃>t λ̃
treat
i , we have

C̃treatit = F̃>t

(
F̃>(T0,i+1):T F̃(T0,i+1):T

)−1
F̃>(T0,i+1):TF(T0,i+1):Tλ

treat
i

+F̃>t

(
F̃>(T0,i+1):T F̃(T0,i+1):T

)−1
F̃>(T0,i+1):T ei,T0,i+1:T

From Equation (26), for the first term in C̃treatit , we have

F̃>t

(
1

T−T0,i
F̃>(T0,i+1):T F̃(T0,i+1):T

)−1
1

T−T0,i
F̃>(T0,i+1):TF(T0,i+1):Tλ

treat
i

= F>t

(
1

T−T0,i
F>(T0,i+1):TF(T0,i+1):T

)−1
1

T−T0,i
F>(T0,i+1):TF(T0,i+1):Tλ

treat
i +Op

(
1

δNT

)
= F>t λ

treat
i +Op

(
1

δNT

)
= Ctreatit +Op

(
1

δNT

)
and the leading term in the error is (F̃t − (H>)−1Ft)

>Hλtreati . For the second term in C̃treatit , we
have

F̃(T0,i+1):T

(
1

T−T0,i
F̃>(T0,i+1):T F̃(T0,i+1):T

)−1
1

T−T0,i
F̃>(T0,i+1):T eT0,i+1:T

= F(T0,i+1):T

(
1

T−T0,i
F>(T0,i+1):TF(T0,i+1):T

)−1
1

T−T0,i
F>(T0,i+1):T eT0,i+1:T + op

(
1

δNT

)
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following the estimation error for F̃t is Op

(
1

δNT

)
, 1
T−T0,i

F>(T0,i+1):T eT0,i+1:T = Op

(
1√

T−T0,i

)
and(

F̃(T0,i+1):T − F(T0,i+1):TH
−1
)>

eT0,i+1:T = op

(
1

δNT

)
following the same argument as Lemma 6.

Thus, we have

C̃treatit − Ctreatit = (F̃t − (H>)−1Ft)
>Hλtreati

+F>t

(
1

T−T0,i

∑T
t=T0,i+1 FtF

>
t

)−1
1

T−T0,i

∑T
t=T0,i+1 Fteit + op

(
1

δNT

)
Since the estimation of (F̃t−(H>)−1Ft)

> comes from the control observations and 1
T−T0,i

∑T
t=T0,i+1 Fteit

is determined by treated observations, they are asymptotically independent. Together with
1

T−T0,i

∑T
t=T0,i+1 FtF

>
t

P−→ ΣF from Assumption 2.1 and 1√
T−T0,i

∑T
t=T0,i+1 Fteit

d−→ N(0,Ψi) from

Assumption 4, we have√
T − T0,i(C̃

treat
it − Ctreatit )

d−→ N
(

0,
T−T0,i

T (λtreati )>Σ−1
Λ (Γt + (F>t ⊗ I)ΘΛ,t(Ft ⊗ I))Σ−1

Λ λtreati

+F>t Σ−1
F ΨiΣ

−1
F Ft

)

Lemma 15. Suppose Assumptions 1-5 hold, T − T0,i → ∞, t1 − t0 is finite, and let δ2
N,T−T0,i

=

min(N,T − T0,i),

δNT ((Z>Z)−1Z>M ctrlZ(Z>Z)−1 +M ctrl
Z )−1/2

(
β̃ctrli − βctrli

)
d−→ N (0, I) (27)

δN,T−T0,i((Z
>Z)−1Z>M treatZ(Z>Z)−1 +M treat

Z )−1/2
(
β̃treati − βtreati

)
d−→ N (0, I) (28)

where (Z>M ctrlZ)−1/2 ((Z>M treatZ)−1/2) is the square root of Z>M ctrlZ (Z>M treatZ) and M ctrl

(M treat) is a (T − T0,i)× (T − T0,i) matrix with

M ctrl
t−T0,i,t−T0,i

= AV ar(δN,T−T0,i(C̃
ctrl
i,t − Cctrli,t ))

=
δ2
NT

T
F>t Σ−1

F Σ−1
Λ (Φi + ((λctrli )> ⊗ I)ΞF,i(λ

ctrl
i ⊗ I))Σ−1

Λ Σ−1
F Ft

M ctrl
t−T0,i,s−T0,i

= Cov(δN,T−T0,i(C̃
ctrl
i,t − Cctrli,t ), δN,T−T0,i(C̃

ctrl
i,s − Cctrli,s ))

=
δ2
NT

T
F>t Σ−1

F Σ−1
Λ (Φi + ((λctrli )> ⊗ I)ΞF,i(λ

ctrl
i ⊗ I))Σ−1

Λ Σ−1
F Fs

M ctrl
Z,lm =

δ2
N,T−T0,i

N
(λctrli )>Σ−1

Λ ΘΛ,i,Z,lmΣ−1
Λ λctrli

and

M treat
t−T0,i,t−T0,i

= AV ar(δN,T−T0,i(C̃
treat
i,t − Ctreati,t )) =

δ2
N,T−T0,i

T − T0,i
F>t Σ−1

F ΨiΣ
−1
F Ft

M treat
t−T0,i,s−T0,i

= Cov(δN,T−T0,i(C̃
treat
i,t − Ctreati,t ), δN,T−T0,i(C̃

treat
i,s − Ctreati,s )) =

δ2
N,T−T0,i

T − T0,i
F>t Σ−1

F ΨiΣ
−1
F Fs

M treat
Z,lm =

δ2
N,T−T0,i

N
(λtreati )>Σ−1

Λ ΘΛ,i,Z,lmΣ−1
Λ λtreati
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Proof of Lemma 15. Since

β̃ctrli − βctrli = (Z>Z)−1Z>(C̃ctrli,(T0,i+1):T − C
ctrl
i,(T0,i+1):T )

and
β̃treati − βtreati = (Z>Z)−1Z>(C̃treati,(T0,i+1):T − C

treat
i,(T0,i+1):T ),

the proof is a direct extension of Theorem 4 and Lemma 2. The term (Z>Z)−1Z>M ctrlZ(Z>Z)−1

comes from (λ̃ctrli −Hλctrli )>(H>)−1Ft. The termM ctrl
Z (andM treat

Z ) comes from (F̃t−(H>)−1Ft)
>Hλctrli

(and (F̃t − (H>)−1Ft)
>Hλtreati ), which follows Assumptions 5 that the variance correction term

dominates. The term (Z>Z)−1Z>M treatZ(Z>Z)−1 comes from

F>t

(
1

T−T0,i

∑T
t=T0,i+1 FtF

>
t

)−1
1

T−T0,i

∑T
t=T0,i+1 Fteit.

Proof of Theorem 6. Note that

(β̃ctrli −β̃treati )−(βctrli −βtreati ) = (Z>Z)−1Z>((C̃ctrli,(T0,i+1):T−C
ctrl
i,(T0,i+1):T )−(C̃treati,(T0,i+1):T−C

treat
i,(T0,i+1):T ))

We have

((C̃ctrli,t − Cctrli,t )− (C̃treati,t − Ctreati,t ))

= (F̃t − (H>)−1Ft)
>H(λctrli − λtreati ) + (λ̃ctrli −Hλctrli )>(H>)−1Ft

−F>t
(

1
T−T0,i

∑T
t=T0,i+1 FtF

>
t

)−1
1

T−T0,i

∑T
t=T0,i+1 Fteit + op

(
1

δNT

)
(λ̃ctrli −Hλctrli )>(H>)−1Ft and F>t

(
1

T−T0,i

∑T
t=T0,i+1 FtF

>
t

)−1
1

T−T0,i

∑T
t=T0,i+1 Fteit are asymptot-

ically independent because the first term is determined by the errors on the control panel while the
second term is determined by the errors on the treated panel.

Thus, from Lemma 2 and Theorem 4,

Mt−T0,i,t−T0,i

= AV ar(δN,T−T0,i((λ̃
ctrl
i −Hλctrli )>(H>)−1Ft − F>t (

1

T − T0,i

T∑
t=T0,i+1

FtF
>
t )−1 1

T − T0,i

T∑
t=T0,i+1

Fteit))

=
δ2
N,T−T0,i

T
F>t Σ−1

F Σ−1
Λ (Φi + ((λctrli )> ⊗ I)ΞF,i(λ

ctrl
i ⊗ I))Σ−1

Λ Σ−1
F Ft +

δ2
N,T−T0,i

T − T0,i
F>t Σ−1

F ΨiΣ
−1
F Ft

Moreover,

Mt−T0,i,s−T0,i

= Cov(δN,T−T0,i((λ̃
ctrl
i −Hλctrli )>(H>)−1Ft − F>t (

1

T − T0,i

T∑
u=T0,i+1

FuF
>
u )−1 1

T − T0,i

T∑
u=T0,i+1

Fueiu),

δN,T−T0,i((λ̃
ctrl
i −Hλctrli )>(H>)−1Fs − F>s (

1

T − T0,i

T∑
u=T0,i+1

FuF
>
u )−1 1

T − T0,i

T∑
u=T0,i+1

Fueiu)

=
δ2
N,T−T0,i

T
F>t Σ−1

F Σ−1
Λ (Φi + ((λctrli )> ⊗ I)ΞF,i(λ

ctrl
i ⊗ I))Σ−1

Λ Σ−1
F Fs +

δ2
N,T−T0,i

T − T0,i
F>t Σ−1

F ΨiΣ
−1
F Fs
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We also need to consider the asymptotic distribution for (F̃t− (H>)−1Ft)
>H(λctrli − λtreati ), which

is driven by the variance correction term (the term in Assumption 5.3) from Assumption 5.

MZ,lm = Cov(δN,T−T0,i(Z
>Z)−1Zl(F̃l+T0,i

− (H>)−1Fl+T0,i
)>H(λctrli − λtreati ),

δN,T−T0,i(Z
>Z)−1Zm(F̃m+T0,i − (H>)−1Fm+T0,i)

>H(λctrli − λtreati ))

=
δ2
N,T−T0,i

N
(λctrli − λtreati )>Σ−1

Λ ΘΛ,i,Z,lmΣ−1
Λ (λctrli − λtreati )

Thus,

δN,T−T0,i

(
(Z>Z)−1(Z>MZ)(Z>Z)−1 +MZ

)−1/2 (
(β̃ctrli − β̃treati )− (βctrli − βtreati )

)
d−→ N (0, I)
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