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Abstract

This paper develops the inferential theory for latent factor models estimated from large
dimensional panel data with missing observations. We estimate a latent factor model by applying
principal component analysis to an adjusted covariance matrix estimated from partially observed
panel data. We derive the asymptotic distribution for the estimated factors, loadings and the
imputed values under a general approximate factor model. The key application is to estimate
counterfactual outcomes in causal inference from panel data. The unobserved control group
is modeled as missing values, which are inferred from the latent factor model. The inferential
theory for the imputed values allows us to test for individual treatment effects at any time. We
apply our method to portfolio investment strategies and find that around 14% of their average

returns are significantly reduced by the academic publication of these strategies.
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1 Introduction

Large dimensional panel data with missing entries are prevalent. In causal panel data, the main
focus is to estimate the unobserved potential outcomes. In financial data, stock returns are missing
before a company is listed, after its bankruptcy or because of illiquidity. In macroeconomic datasets,
panel data might be collected at different frequencies or not for all geographical locations resulting
in missing entries. In the famous Netflix challenge, a majority of users’ ratings for films are
missing. Estimating missing entries in panel data is a fundamental problem with applications in
social science, statistics, and computer science.

This paper presents an inferential theory for latent factor models estimated from large dimen-
sional panel data with missing observations. We propose a novel approach to estimate a latent factor
model by applying principal component analysis (PCA) to an adjusted covariance matrix, which
is estimated from the partially observed panel data. We derive the asymptotic normal distribution
for the estimated factors, loadings, and imputed values.

The key application is to estimate counterfactual outcomes for causal inference. The unobserved
control group is modeled as missing values, which are inferred from the latent factor model. The
inferential theory for the imputed values allows us to test for individual treatment effects at a
particular time. This granular test is of practical importance because we learn not only for whom
but also when the treatment is effective which allows us to optimally allocate treatments to units

over time.

1.1 Main Contribution

Our work contributes to three distinct fields: large dimensional factor modeling, matrix completion
and causal inference. First, we extend the inferential theory of latent factors to large dimensional
data with general patterns in missing entries. Second, matrix completion methods impute missing
entries under the assumption of a low-rank structure which is corrupted with noise. We provide
confidence intervals for the imputed values. Lastly, the key question in causal inference is the
estimation of counter-factual outcomes, i.e. what would have been the outcome if a unit had not
been treated or if a unit had been treated. The unobserved counter-factual outcome can naturally

be formulated as a missing observation problem. We are the first to provide a test for the point-wise



treatment effect that can be heterogeneous and time dependent under general adoption patterns
where the units can be affected by unobserved factors.

The inferential theory for latent factor models with missing data is important for a number of
reasons. First, we show how to consistently impute the missing observations in a large dimensional
data set, which can then be used as an input for other applications. Second, we provide confidence
intervals for the imputed values, which serve as a decision criterion if the imputed data should be
used. Third, we provide the conditions under which missing values can be inferred. Fourth, the
distribution of the missing observations can actually be the object of interest itself. For example,
the imputed values serve as the synthetic control for which we need an asymptotic distribution
theory. The inferential theory is key for deriving a test statistic for a treatment effect.

Our method is very simple to adopt and but works under general assumptions. Conventional
factor estimation in large dimensional panel data applies PCA to a sample covariance matrix, which
requires a fully observed balanced panel. To tackle the missing entries in the panel, our estimator
replaces them with zeros and re-weights the observed entries. The next step is to simply apply
PCA to the covariance matrix of this transformed panel. The missing entries are estimated by the
common components of the factor model. We only need to make the standard assumptions of an
approximate factor model.

Our framework allows for very general patterns of missing observations. The patterns are
modeled as general functions of the unobserved loadings and unit specific features. In this case,
the re-weighting of the observed entries is based on a propensity score for which we provide a
consistent estimator. Allowing the missing pattern to be a function of unit-specific characteristics
is relevant for the causal inference application as the treatment of units is typically not random.
Furthermore, we cover the common scenario of a simultaneous and staggered treatment adoption
where the treatment cannot be removed once implemented. Our framework also allows for the
common case studied in the matrix completion literaturdﬂ that the data is missing independently
of the underlying factor model. In this case, the re-weighting of the observed entries is simply based
on the proportion of missing to observed entries.

Deriving the inferential theory under these general conditions is a challenging problem. The

missing observations have a complex effect on the asymptotic covariance matrix of the imputed

1See (Candes and Recht) 2009; [Negahban and Wainwright| 2012).



entries. In particular, the asymptotic variance has an additional variance correction term compared
with the fully observed panel. This term results in a larger asymptotic variance than in the fully
observed case.

In our empirical analysis, we study the effect of academic publications on the return of anomaly
portfolios. There is an ongoing debate in asset pricing on whether academic publications result in
the disappearance, reversion or attenuation of anomalies in equity returns. An anomaly describes
a pattern in average returns that cannot be explained by a benchmark asset pricing model as for
example the important Capital Asset Pricing Model (CAPM). |Schwert| (2003), McLean and Pontiff
(2016) and |Chen and Zimmermann| (2018) suggest that the return of anomalies are reduced after
their publication, mainly because investors become aware of the effect and correct the mispricing.
Our novel methodology allows us to test if the average return or pricing error of an anomaly portfolio
is significantly reduced by its publication. At a 5% confidence level, merely 14% of the anomalies
are significantly reduced by publication. Importantly, a naive estimation of the publication effect
which simply compares time-series means before or after the publication date is more likely to find
an effect as the sample mean returns are in general lower in the latter part of the data set. Our
approach correctly accounts for time effects and the uncertainty in the estimation showing that the

risk premium of most “classical” anomalies have not been affected by publication.

1.2 Related Literature

We show the inferential theory for large dimensional factor models from incomplete panel data
with general missing patterns. This paper works under the framework of an approximate factor
structure where both the cross-section dimension and time-series dimension are large. When the
data is fully observed, Bai and Ng| (2002)) show that the factor model can be estimated with PCA
applied to the covariance matrix of the data. Bai (2003]) derives the consistency and asymptotic
normality of the estimated factors, loadings and common components, which are the product of
factors and loadings. Bai| (2009) extends the inferential theory to a model with observed covariates

and latent factorsﬂ When a panel has missing entries, a common approach is to estimate the factor

2A current active research topic is to extend the constant loading factor model to a time-varying loading model
by using a projection in the cross-section dimension (Fan et all [2016; Kelly et all |2018), a local window or high
frequency approach (Pelger} [2019; |Ait-Sahalia and Xiu, 2018|) or a kernel projection in the time dimension (Pelger
and Xiong} 2018)). However, the current literature relies on a fully observed panel data set of the projected data.



model from a subset of the data for which a balanced panel is available. This approach has two
drawbacks: First, it is in general less efficient as our approach makes use of all the data. Second, it
can lead to a biased estimate if the data is not missing at random. For example, a complete panel
of stock returns suffers from survivorship bias as only companies can be included that did not go
bankrupt.

The inferential theory of large dimensional factor models with missing observations is an active
area of research. Our paper is most closely related to the recent papers by [Su et al. (2019),
Bai and Ng (2019) and Chen et al.| (2019). The papers differ in the algorithms to impute the
missing observations, the generality of the missing patterns and the proportion of required observed
entries relative to the missing entries. There is a trade-off in terms of generality of the model and
required observations, where our work allows the most general pattern in missing observations
with a general approximate factor structure at the cost of observing entries at the same rate as
missing entries. Importantly, in contrast to the other papers our framework allows the missing
pattern to depend on unit specific features and to test for an individual treatment effect at any
time for any cross-section unit or a weighted treatment effect. This is exactly what we need for
the main application in causal inference. [Su et al.| (2019) estimate the latent factor model with
the expectation—maximization (EM) algorithm under the assumption of randomly missing Valuesﬁ
Independently and simultaneously, Bai and Ng| (2019)) provide the inferential theory for the factor-
based imputed values based on the innovative idea of shuffling rows and columns such that there
exist fully observed TALL and WIDE blocks for estimating the factor modelﬂ Chen et al.| (2019)
approach the problem from a matrix completion perspective which can also be mapped into a

factor model framework. They solve a nuclear norm regularized optimization problem to estimate

3Stock and Watson| (2002b); [Baribura and Modugno| (2014); Negahban and Wainwright| (2012) propose to use
EM algorithms to estimate the factor model from the panel data with missing observations. |Giannone et al.| (2008);
Doz et al.| (2011); |Jungbacker et al.| (2011)); |Stock and Watson| (2016) propose to use the state space framework and
Kalman Filtering to estimate the factor model with missing observations. |Gagliardini et al.[ (2019) propose a simple
diagnostic criterion for approximate factor structure in large (unbalanced) panel datasets. Other work to impute
missing values using EM algorithms includes [Rubin| (1976); [Dempster et al. (1977)); Meng and Rubin! (1993) that
study the problem under a different framework, i.e., on cross-sectional data (but not panel data).

4Our paper differs from [Bai and Ng| (2019) in three aspects: 1. We allow the observational pattern to depend on
the loadings or observed covariates; 2. We provide general tests for treatment effects, such as an individual treatment
effect at any time or a weighted treatment effect. 3. Their re-shuffling of rows and columns imposes some restrictions
on the missing patterns and might result in using less observations for estimating missing entries. Our first point
requires a re-weighting of the observed entries by a generalized propensity score which we assume to be positive.
The second point, requires the number of observed and missing entries to grow at a similar rate. The third point
complicates our derivations of the inferential theory as we have to deal with many local rotation matrices of the latent
factors.



the missing entries and develop an inferential theory under the assumption of random sampling
and i.i.d. noise. The last two papers require less observed entries than our framework, which is
relevant for problems such as the Netflix challenge, but have restrictive assumptions on missing
patterns or the factor model, which limits the application to causal inference in the social science,
which is our main objective.

Our imputed values are point-wise consistent and have asymptotic normal distributions which
is relevant for the matrix completion literature that studies a similar problem. Both our paper
and the matrix completion literature assume a low-rank structure in the panel data. In the matrix
completion literature, the most popular method is to estimate the low-rank matrix from a convex
optimization problemﬁ The main results in the matrix completion literature are upper bounds for
the mean-squared estimation error for the estimated matrix. However, point-wise consistency does
not hold in general because the typically used nuclear norm regularization results in a bias in the
estimated matrix. In their path-breaking work, |Chen et al.| (2019) propose de-biased estimators
and provide an inferential theory under the assumption of i.i.d. sampling and i.i.d. noise. Our
paper contributes to the matrix completion literature by allowing general observation patterns and
dependent error structures, which is particularly relevant for applications in the social science.

Our paper allows for heterogeneous and time dependent treatment effects of an intervention
and general intervention adoption patterns compared with the synthetic control methods in causal
inference. Furthermore, our paper provides a flexible test for the treatment effects. In comparative
case studies, a key question is to estimate the counter-factual outcomes for the treated units.
A valid control unit is “close” to the treatment unit except for the treatment effect. Typically
synthetic controls are weighted averages of untreated units where the weights depend on unit
specific features. A popular model assumption is that the potential outcome is linear in observed
covariates and unobserved common factors (Abadie et al., [2010, 2015). |Abadie et al. (2010, 2015,
Hsiao et al.| (2012), Doudchenko and Imbens| (2016), |Li and Bell (2017), |Li (2017), Carvalho et al.
(2018)), and [Masini and Medeiros (2018) propose to match each treated unit by weighted averages

of all control units using the pretreatment observations. |Li and Bell (2017) and |Li (2017) further

5The conventional optimization problem is to minimize the mean squared error between the observations and the
corresponding entries in the estimated matrix while regularizing the nuclear norm of the estimated matrix (Mazumder!
et al., 2010; [Negahban and Wainwright|, 2011} |2012). The nuclear norm of a matrix is similar to the ¢; norm of a
vector. The optimal solution has a lower rank if the nuclear norm has more weight in the objective function.



show the inferential theory for the average treatment effect over time. [Li and Bell| (2017) propose
using the LASSO method to select control units and |Carvalho et al. (2018) show the inferential
theory for the LASSO method. Masini and Medeiros| (2018) focus on the high-dimensional, non-
stationary data. These methods rely on the assumption that there is only one treated unit and
the treatment effects are either constant or stationary. Another method is to regress the post-
treatment outcomes for the control units on the pre-treatment outcomes and covariates and use the
coefficients to predict the counter-factual outcome for the treated/control units. |Athey et al.| (2018))
proposes to use matrix completion methods to complete the control panel data and allow for more
general treatment adoption patterns: multiple treated units and staggered treatment adoption.
However, the point-wise guarantee for the imputed values is not provided in |Athey et al.| (2018).
In this paper, we do not only allow for general treatment adoption patterns, but also provide the
point-wise inferential theory for the imputed counter-factual outcomes. Furthermore, we can test
for treatment effects even if they are heterogeneous and time dependent. Our approach does not
require a priori knowledge on which covariates describe if a treated and control units are a good
match. Instead, our latent loadings capture all unit-specific information in a data-driven way.
The synthetic control that we impute is a weighted average of the untreated units that takes all
unit-specific information into account.

The rest of the paper is organized as follows. Section [2] introduces the model and provides
the estimator for factors, loadings, and common components. Section [3| states the necessary as-
sumptions for our theoretical results. Section [4 shows the asymptotic results and the tests for the
point-wise treatment effect. Section [5| provides a feasible estimator for the propensity score which
is needed as a weight to construct our estimator. Section [0 demonstrates simulation results. In our
empirical analysis in section[7] we study the effect of academic publications on investment strategies.

Section [§] concludes the paper. Additional results and the proofs are collected in the Appendix.

2 Model and Estimation

2.1 Model

Assume we partially observe a panel data set with T time periods and N cross-sectional units.

This panel data has a factor structure with r common factors. Denote X;; as the cross-sectional



observation i at time ¢, F; € R™! as the latent factors at time ¢, \; € R"*! as the factor loadings

of the cross-sectional unit ¢ and e;; as the idiosyncratic error:

Xy=MNF+e; i=12--- Nandt=1,2,---,T

or in vector notation,
Xy = A B+ e
~ N
Nx1  NXr yx1  Nx1

fort=1,2,---,T.

In an asymptotic setup where N and T are both large, we randomly observe some entries in
X =[X1,Xo, -+, X7] € RVXT Let W;; € {0,1} be the indicator variable, where W;; = 1 indicates
that the (i,%)-th entry is observed and W;; = 0 otherwise. In this paper we will estimate the latent
factors F' and loadings A from the partially observed X, impute the missing values and provide the

inferential theory for all estimators.

2.2 Estimation

There are two steps to estimate the latent factor model from the partially observed panel data:
First, we need to estimate the covariance matrix of the data and second we estimate the latent
factors and loadings based on the eigenvectors of the estimated covariance matrix. The conventional
latent factor estimator without missing values applies principal component analysis to the sample
covariance matrix. A natural way to deal with the missing values is to set these entries to zero.
However, the conventional PCA estimator will then be biased. Our estimator correctly reweights
the entries in the covariance matrix before applying PCA.

We first impute the missing entries by 0 and denote the imputed matrix as X:
Xy =XyWy, fori=1,2,--- ,Nandt=1,2,---,T

In matrix notation, we have X=X0o W, where ® denotes the Hadamard product.

When some entries are missing in X, the conventional sample covariance estimator %5( X7
is biased because the actual realization of the missing values is not equal to zero. We propose
the natural estimator of the covariance matrix where for each entry we only use the time periods

when both units are observed. This is equivalent to estimating the sample covariance matrix with



X , but reweighting the entries. Figure [1| is a simple example to illustrate the covariance matrix
estimation if for a part of the cross-section the entries are missing in the second half of the data.
More generally, our sample covariance matrix estimator equals
= 1
Yij = o] Z Xit X, (1)
e,
where Q;; is the set of time periods ¢ when both units ¢ and j are observed. Under the assumptions

imposed in this paper, ﬁ Etegij X+ Xt is a consistent estimator for the covariance between unit
1]

i and j.
1 T T 1 T
X1 o Xin | Xegprr 0 Xur 75 2ot X1 Xy | 75 2oply Xt Xog
... . 1 ~To T | 15T T
X1 Xot, | Xo1pt1 XoT 7o 2oton XoaX iy | 720 X2 Xy,

(a) Observation pattern for X: Shaded entries are  (b) Sample covariance matrix 3: Shaded entries are
missing. estimated using observations up to time Tj

Table 1: Covariance matrix estimation for X with missing entries. For t = Ty + 1,...,T the first
Ny cross section units are missing, while the elements Ny + 1,..., N are observed for all ¢, i.e.
Xl,t = (Xl,t XNOJ) and Xz,t = (XNO+1,t XN,t)-

When the data is fully observed, we can apply Principal Component Analysis (PCA) to ﬁX X7
to estimate the loadingsﬁ Up to rescaling the eigenvectors of the largest eigenvalues estimate the
loadings. Then, we regress X on the estimated loadings to get the estimated factorsm

Similarly, for the partially observed data we apply PCA to %i to estimate the loadings We
first estimate loadings and impose the identification assumption ATA /N = I, to uniquely identify
the loadingsﬁ Estimated loadings A are /N times the r eigenvectors corresponding to the largest

eigenvalues of the sample covariance matrix, that is

1 an  ~n~

A=AV, (2)

S Alternatively, we can apply PCA to ﬁX X7 to estimate the loadings and then regress X' on the estimated
loadings to get the estimated factors. The estimators are also consistent and asymptotic normal. Assume we have
demeaned X for every ¢ so in (%XXT)Z.J. is a root-\/ﬁ consistent estimate for the covariance cov(Xit, Xj¢).

"Bai and Ng| (2002) and [Bai| (2003) develop the inferential theory, i.e., the consistency and asymptotic normality,
for the factors and loadings estimated from PCA.

$We divide & by N such that the eigenvalues of %i do not scale with N and T'.

9We assume the true number of factors is r and has been consistently estimated as in [Bai (2003).



The next step is to estimate the factors. When the data is fully observed, we can regress X;; on
Xi to estimate the factors at time ¢, F}. However, when X.; is only partially observed, we propose
to regress only the observed X;; on XZ This is a consistent estimator of the factors if the missing
pattern does not depend on the )\;, i.e. the unit-specific attributes.

However, we allow for more general observation patterns, that is, the probability of whether
Xt is observed can depend on some observed covariates S € RN**. In particular, the covariates
S can depend on the unit-specific attributes A. We use P(W;; = 1]S) to denote the probability of
Xt being observed, which is an extension of the propensity score used in causal inferencﬂ and
introduces the concept of time into the propensity score. We will have a more detailed discussion
on the observation pattern in Assumption [I]in Section [3]

Given the observation probability P(Wi; = 1|S), we estimate F' from a weighted averag

F = ]1[2 ]J(W)A/jlw)XitAi = Jbzezc):t P(VVitl:lS)Xit)\z‘a (3)
where Op = {i : W;; = 1} is the set of units observed at time tm The weight m is always
at least 1, which compensates for the missing entries at time ¢ and removes the biases in ﬁt. The
estimator for ﬁt is closely related to the inverse propensity score estimator in causal inferenc
In the special case when all entries at time ¢ are missing at random with equal probability and
independent of the covariates S, that is P(Wy = 1|S) = p; = limy_00 |O|/N for all i, then

equation simplifies to

F = IOtI > X (4)

€Oy

The last step is to estimate the common component C;; = )\iTFt. We use the plug-in estimator,

éit = XJ— ﬁt. If X;; is not observed, we estimate X;; by @t.

198ee (Rosenbaum and Rubinl [1983)

1The standard form of weighted least squares is %Ei\[:l ﬁX“L (i Zflm)\ )\T)

1

. P .
Since + SN 1m)\ Al — XA from Assumption , we have YN ot B, 2175) Xit i
1
%Zi:lm itAi (ﬁ Zivlm)\A ) = Op (ﬁ) and we use Equatlon fOI' notational

simplicity.
"*We assume 2 = 0 in this paper. If P(W;; = 1|S) = 0, we have

W, _
W, =175 = O-
13Compare with (Hahnl 1998} |Hirano et al.l [2003)



2.3 An Illustrative Toy Example

We illustrate in a simple example how our estimator differs from the conventional PCA estimator.
Assume that we have only one factor and the factor, loadings and residual components are i.i.d.

normally distributed:

Xp=NFi+ex FNWO6Z) N EENWO1) e KN, 02).

As in Table [I] the cross sectional observations 1,..., Ny are missing for Ty + 1,...,7. We sepa-

=
rate the vector of factor realizations into its first F1 = ( P FTo) and second part Fo =

T T T
(FT0+1 .. FT) and similarly for the loadings A; = <)\1 - )‘N0> and Ay = <)\N+0+1 - AN) .
We start with the simplest case without error terms e; to illustrate the logic of reweighting the

entries. In this case the conventional covariance matrix equals

XXT 1 [MF[ 0 FIA] FiAg ) [/3A) 1 T
T T T T T (7 +oW) (FAT AT )
A2F1 A2F2 0 F2A2 A2

Obviously, the eigenvector of this matrix is a biased estimate of the loadings. In contrast, the

eigenvector of the correctly weighted sample covariance matrix consistently estimates the loadings:

F/Fi T F/Fi T
Y= 0 0 = (07 + 0,(1)) <AT AT> :
T T T p 1 2
ATEEAT ATEEEEAT ]\ A,

The same logic carries over to the estimator of the factors. Assume that we know the population

loadings. Then, the estimator of the factor from the regression on the loadings equals

1 ~ 1 [F1iAT FoA] ) [A F
NXTA = N b 2 ! = ! + Op(l).
0 FoA | \ A, F, X0

which is a biased estimator for the second time period of the factor. The weighted least square

10



regression provides a correct estimator

T T
~ Fl 1\1 A1]4\}A2 Ao F1
F= = +0p(1)7
F,ALAL F
2 No 2

Note that in this special case the probability of observing an entry equals P(W; = 1|5) = %
which is independent of any covariates S.

The proper reweighting in the loading and factor estimation leads to an additional correction
term in the asymptotic variance of the estimator. As an illustration of this additional challenge,
we add the i.i.d. error term e;; to our example. In our simplified setup our consistent estimator for

the loadings A has the following expansion for ¢ = 1, ..., Np:

~ ~ —1 T - - —1
VE(h-n) == () LS R vr (2E) (BE L E B o)
o\ T VT & T To T P

which results in the asymptotic normal distribution

N(O,Tlg—g—l—ZT%oT‘)) fori=1,..., No
(5)
N(o, %) for i = Ng+1,..., N.

The second term in the asymptotic expansion is due to averaging over different number of units for
different elements of the loadings. This additional variance correction term vanishes for Ty — T
Similar terms appear in the distribution of the estimators of the factors and common components.
We show under general conditions how these correction terms arise in the asymptotic distribution

and how to take them into account for the inferential theory.

2.4 Application to Causal Inference

One of the most important applications of our inferential theory is to test for a treatment effect
in the panel data setting. The fundamental problem in causal inference is that we only observe
the outcome under treatment and would like to compare it with the unobserved outcome without
treatment. We will model the counter-factual outcome as the missing observation. Our estimator

allows us to impute the missing observations which serve as the counter-factual control outcome.

11



The treatment effect is the difference between the treatment and control outcomes. Our inferential
theory is key to provide feasible test statistics for the treatment effect.

A valid control unit is “close” to the treatment unit except for the treatment effect. Typically
synthetic controls are weighted averages of untreated units where the weights depend on observed
covariates. Our approach is more general. We do not need to take a stand a priori on which
covariates describe if a treated and control units are a good match. Instead, our latent loadings
capture all unit-specific information in a data-driven way. The common component that we impute
is a weighted average of the untreated units that takes all unit-specific information into account.

Our object of interest is the common component of the units after treatment adoption C¥ ¢
and the common component of the synthetic control Cff”. The treatment effect for unit ¢ at time
tis 7 = Cleat — C’Z-";m. Previous literature in causal inference in the panel data setting focusses
on the average treatment effect over timdﬂ Importantly, our novel approach allows us to test an

entry-wise effect:
HoiTitZO Hl 1Tit§é0

as we can provide the asymptotic distributions for 6’%” and @t[ eat

Obviously, we can also accommodate an average treatment effect ﬁ Z::F:TO 41 Tit- More gen-
erally, we allow for regressions of the observed treatment units X}/ “* and unobserved control units
X ftt’"l on observed covariates Z and can test for a treatment effect in the regression coefficients. The
time-series average treatment effect is just a special case. The time-series regression on covariates
Z averages out the residual term e;; and hence allows us to extend the analysis beyond the common
component. We provide a test for a treatment effect for the case where the treatment and control
units have different loadings but share the same latent factors and the more general case where

also the latent factors can be different after treatment.

3 Assumptions

Notation. Let M < oo denote a generic constant. Let ||[v|| denote the vector norm and ||A| =

trace(AT A)1/? the Frobenius norm of matrix A. We denote the set of (time-series/cross-section)

Y“For example (Li, [2017; [Li and Bell, [2017)

12



indices corresponding to the observed entries by Oy = {i : Wy = 1}, Oy = {i : Wiy = 1 and Wy =
1}, Qi ={t: Wiy =1} and Q5 = {t : Wy = 1 and Wj; = 1}. Thus, Oy = O, and Q;; = Q;. The
weighting matrices of the inverse probability are (=1 = [1 /7] = [N/|Ogq|] and Q=Y = [1/g;;] =
[T/]Q;j|], where |S| denotes the cardinality of the set S.

We allow for very general patterns in the missing observations. Figure [If shows three observa-
tion patterns that are allowed by Assumption [I} These three patterns are widely seen in empirical
applications. The first one is the randomly missing pattern, that is, whether an entry is observed
or not does not depend on other entries or observable covariates. For example, the observational
pattern of the Netflix challenge is modeled as randomly missing entrieslﬂ The second and third
ones are the observation patterns for control panels in simultaneous and staggered treatment adop-
tions. Once a unit adopts the treatment, it stays treated afterwards. These two patterns are widely

assumed in the literature of causal inference in panel data[T

. I T
AT S — e——
_g." -'—:I-:":-n..:':l;u:' - —— —
5*... ..L ‘.. r....llFL 5 S EEEEEEEEE
i -':.'!-.;l' ' ""1"'-;..:-' -
.. mn AEEEEEEEEEEEEEEEEEEEEEEEE |

(b) Missing pattern for the
control panel in the
simultaneous treatment
adoption

(c¢) Missing pattern for the
control panel in the staggered
treatment adoption

(a) Randomly missing

Figure 1: Patterns of missing observations. The shaded entries indicate the missing entries.

Assumption 1. Missing observations:

1 imy 00 |Os|/N > 7 > 0, imy 00 [Ogt| /N > m > 0; Similarly, imp o [Qil/T > q > 0,

lim7 00 ’Qz] ’/ >q>0.

2. W is independent of A conditional on S. W is independent of F' and e.

'?(Candes and Recht, [2009; |Zhou et al., [2008).
16See (Athey et al.,|2018; |Athey and Imbens, |2018D

13



3. For j # 1, Wy is independent of Wjs conditional on Sm The probability of Wiy = 1 depends
on S, denoted as P(Wy = 1|S). 0 < p < P(Wy = 1]S).

4. limN_00|Oy| /N = py where 0 < p < py.

Under Assumption [I}1, the number of observed realizations for every cross-section unit i goes
to infinity as T — oo; similarly, the number of observed outcomes for every time period ¢ goes to
infinity as N — oo. This assumption is necessary for the pointwise asymptotic results for the factors
and loadings, which requires many observations for every time period and every cross-section unit.
The observation pattern can depend on observable covariates S. All our results go through if these
covariates are actually the loadings A themselves. However, using the consistent estimator A for S
still provides consistent estimator of all quantities, but affects the asymptotic distribution due to
the estimation error. By working with observable covariates we avoid this additional term in the
asymptotic distribution.

Assumption [1]2 is closely connected to the unconfoundedness assumption in causal infer-
enceﬁ Wi can depend on the outcome X, i.e. observations with specific attributes can be more
likely to be missing. Assumption[I]3 is related to the propensity score and overlap assumption
in causal inference. We allow the observation probability to change over time, which generalizes
the propensity score that is static. We condition on S instead of S;  to allow a general dependency
structure of W on S. P(Wy = 1]5) = P(Wy = 1|S;.) would rule out network effects, which is
usually assumed in the definition of the propensity scorﬁ We assume P(W;; = 1|S) is bounded
away from 0, such that m does not diverge, which is equivalent to the overlap assumption

in causal inference.
Assumption 2. Factor Model:

1. Factors: Vt, E[|F||*] < F < co. There exists some positive definite v x r matriz S, such
that %Zthl FtFtT il Yp and E H\/T (% Zthl Z*"tl*"tT — EF)H < M. Furthermore, for any

P 1
Qij» T Lteg,, Pl — Tp and E H\/@ (@ Yieo, FiFy - EF) H =M.

17t and s can be the same.
18Compare with (Rosenbaum and Rubin), [1983).
19F.g. (Rosenbaum and Rubin| |1983)
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2. Factor loadings: loadings are random, independent of factors and errors and have bounded
fourth moments. There exists some positive definite rxr matriz X such that Z /\‘)\-T Lif
YA and E H\/N(% valz\ )\T EA)H < M. Moreover, + N ZZ 1 m)\ )\ i YA and
EH\F( N v WirhiA] —EA>H <M.

3. Time and cross-section dependence and heteroskedasticity of errors: There exists a positive

constant M < oo, such that for all N and T':

(a) Eley] =0, Eley|® < M.

(b) Eleiseit] = Vsti with |ystil < vst for some s and all i. For all t, Zzzl Yot < M.

(¢) Elejeji] = 1ij with |15+ < 7 for some 75 and all t. For alli, ) Tij < M.

jESSt

(d) Eleiejs| = Tij1s and Z;V:1 ZST:1 |Tijes] < M for all i and t.

4
(e) For alli and j, E W Ztegij (eireje — E[eiteﬁ])’ <M.

4. Weak dependence between factor and idiosyncratic errors: for every (i, j),

2
1
E > Feyl| <M.
V19 &5,
5. Eigenvalues: The eigenvalues of XAXp are distinct.

Assumption [2| describes an approximate factor structure and is at a similar level of generality
as [Bai (2003)): (1) Assumption ensures that each factor has a nontrivial contribution to the
variation in X. (2) We assume loadings are random but independent of factors and errors in
Assumption We could study a factor model conditioned on some particular realization of the
loadings and the analysis would essentially be equivalent to that under the assumption that loadings
are nonrandom. (3) Assumption allows errors to be time-series and cross-sectionally weakly
correlated. (4) Assumption allows factors and idiosyncratic errors to be weakly correlated. (5)
Assumption guarantees that each loading and factor can be uniquely identified up to some
rotation matrix.

Additionally, we assume that these aspects also hold if we look at a subset of all time periods

(the subset is denoted as Q;; in Assumption . Together with Assumption 27 our covariance
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matrix estimator ([1|) using incomplete observations has similar properties as the conventional co-
variance matrix estimator %X X T using full observations. For example, both @ ZteQij Xit Xt
and % ZtT:l X+ Xt are consistent estimators for ¥;;. Moreover, the eigenvalues and principal com-
ponents estimated from both matrices are consistent, which we show in the next section and which
is the foundation to develop the inferential theory of the factor model estimated from Equation .

We allow W to depend on S. As a result, the unweighted average Og, @ > )\i)\j does

’ieOst
not necessarily converge to X5 but requires reweighting by the propensity scoreﬂ Assumption
arises naturally as illustrated by the following example. Assume that the probability of observing
an entry depends on the unit-specific features captured by the loadings P(W;;|S) = P(Wj|\;). For

simplicity we assume that A; is i.i.d. with second moment ¥, and rule out network effects. E By

the Law of Large Numbers & 3% | prryWaAA] 2 E [ 2RI | = Ty for all ¢

Assumption 3. Moments and Central Limit Theorems: AM < oo s. t. for all N and T

2
1 N 1 .
1. E‘ VR 2=l i Ztegij (eirejr — Eleeji])|| < M for every j.
v 2
1 T
2. N Ztegﬁ NiF, ei|| <M for everyt

3. ‘F (D SARPY AZTIQt | ZtEQ Fey % N(0,®;) for every j, where

®j = th,T%oo N2 Zz‘:l 21:1 [)‘M: <|7Qij|\gm Zsegij,teglj,(s,t)emj D [FSFtTejsejt]) )‘l)‘lT]'

d
4. \/% Zieot m)\ifﬁit — N(0,T) for every t, where

Ty = limy 00 20, €0, (i)eRe, P(Wit:I\S)lP(Wlt:HS)E[)‘i)‘l—r]E{eite“]'
N T d - ,
5. § S AN (@ >0, EF - L3 FtFtT) — N(0, :ij) for every j.
Wit A d
6. VN (% PO m — & >V, /\i)\iT) — N(O,@A,t) for any t.

N N T
7. ﬁ Zizl Zl:l Al)‘l—r (‘Qﬁ ZSEQU FSFST - % 25:1 FSFST) )‘l)‘l = 0p (%)

20Tn the causal inference literature, the inverse propensity score weighted estimator is widely used to estimate the
treatment effect, see for example (Hahnl [1998} Hirano et al., |2003).

21'We can interpret this case as we first sample )\; from some 1.i.d. distribution and we estimate the latent model
of X with missing entries conditional on A.

22This statement should be read as gvec (Zf\;l A (\Qilul Ztegij FF - LT FtFtT)) 4 N(0,2r,),
where vec is the vectorization operator.

AT
23This statement should be read as v Nvec (% PO % LN N )\T) N(0,0O4,:)), where vec is the

vectorization operator.
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1 N T
8 2 Z’iGOt P(Witlzl\S) 2= )‘l)‘zT (@ ZSGQ” FF) - % De=1 FsFJ) Ai€it = 0p (ﬁ)

Assumption [3]is not required to show the consistency of loadings and factors but is only used
to show the asymptotic normality of the estimators. Assumption [3]1-4 is closely related to the
moment and CLT assumptions in Bai| (2003). The first two parts in Assumptions 3| restrict the
second moments of certain averages. The 3rd and 4th point state the necessary central limit
theorems. g Zf\il AM;@ Ztegij Fie; 4, N(0,®;) is one of the leading terms in the asymptotic
distribution of the estimated loadings XZ However, @ Ztegij Fie;; varies with ¢ so we cannot
separately average over the cross-sectional and time dimension as in the conventional framework.
Point 5-8 are specific to the missing value problem and introduce the correction terms that appear

in the asymptotic distribution. They are due to the fact that our estimator averages over different

number of observations for different entries in the covariance matrix.

4 Asymptotic Results

4.1 Consistency

We first show the consistency of our estimators. Similar as [Bai (2003)), our analysis starts with
plugging in X = (ATF 4 ¢) © W into Eq. . With some algebra, we have
~ 1

N N
~ ~ 1 ~ ~
_ -1 ATET i 4 N -1 oTdi : NS
A=~V ;:1 M) F dzag(WzQWj)F)\J/qU—FNTV ;_1 Aie; diag(W; © W;)FA;/qi

H;j\, I

NT

N

1 ~ ~

+ ﬁv—1 > XN Fdiag(W; © Wy)ej/gij +
=1

N
1 ~ ~
VY N diag(Wi © W)ej /aij,
=1

~~

II II1

where H; = ﬁ?il Zf\;l Xi)\iTFTdiag(Wi ® W;)F/q;j is different for different units j. Let H =
- VIATAFT F, which is defined similarly to the rotation matrix H in Bai and Ng| (2002). Then
we have

Xj— HXj = \j — Hj\j+ (Hj — H)\j = T+ 11+ 11 + (H; — H))j.

We show in the appendix that the time-series averages of the square of I, II and III converge

to 0 at the rate O, (min (%,%)) Furthermore, Under Assumption %FTF il Yr and
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P .
|Qilij| ZteQij F,F,) = Yp, we can show H; — H = O, <m1n (ﬁ, ﬁ))

Then we have the following theorem for the consistency of the estimated loadings.

Theorem 1. Define 3,7 = min(N,T). Under Assumptions and@ we obtain
1 & 2
) ~
e | v 2o [N = BN ) = 0,00, (6)
j=1
where H = ﬁf/*T\TAFTF.

Theorem [I] states that the whole loading matrix can be consistently estimated up to an appro-
priate rotation as N, T — oo even if we only observe an incomplete panel matrix. The convergence
rate is the same rate as for the fully observed panel in Bai and Ng| (2002). Theorem [1| is based
on the assumption that the observed entries are representative for the missing entries and hence

provide a consistent estimation. Theorem [1|is a critical intermediate step to show the asymptotic

normality of the estimated factor model in the next section.

4.2 Asymptotic Normality
The factors, loadings and common components are asymptotically normally distributed.

Theorem 2. Under Assumptions and if VT /N — 0, then for each i as N,T — oo:

N
VIG, - 1) = YLy O X Fen VIV UH — B\, + o) (1)
i=1 YUl teQ;;
S N (0,VTHQTYT(@+ (N @ DEry(y e D)IQTVTY), ®)

where @ = V1/2T2}1/2, V is a diagonal matriz with the diagonal entries being the eigenvalues of
21F/2EAE}7/2, T is the corresponding eigenvectors, ®; and Zr; are defined in Assumption@. Assume
we know the auto-correlation structure in error terms that are only weakly serially dependent, then

the plug-in estimator 1~“>\j for the asymptotic variance in (@/ 1s consistent and yields
=-1/2 /% d
VIT V2 = HA) % N(O, ). (9)

Theorem [2 states that the estimated loadings converge at the rate of v/T, which is the same
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as the conventional PCA in Bai| (2003). The asymptotic distribution of estimated loadings is
determined by two terms: the time-series average of Fiej;, the first term in the right-hand side
(RHS) of Equation , and the difference between the unit-specific rotation matrix H; and the
unified rotation matrix H, the second term in the RHS of Equation . In the conventional PCA,
the asymptotic distribution of the loadings only depends on the first term, the time-series average

of Fiej;. The difference between H; and H has mean 0 but is of the order of O, < and thus the

)
difference contributes to the asymptotic distribution of the loadings. Compared with the estimated
loadings from the fully observed data, the estimated loadings from the partially observed data have
a larger variance. This finding makes intuitively sense as estimating loadings from the partially
observed data is equivalent to estimating the loadings with less data, i.e., a smaller panel. The

asymptotic normal distribution comes from Assumptions[3}3 and [3]5, which describe asymptotically

independent distributions.

Theorem 3. Under Assumptions and if \/N/T — 0, then for each t as N, T — oo:

VN, —(HY'F) = Z

H)\ieit—f—\/—zvztﬂ)\)\ Ft+0p( ) (10)

16(9 Zt - 1|S)
d _ _
= N(0,(Q >T<Pt +(F @ Doy (Fe)Q™), (11)
where v;; = m —1 forie Op and vy = —1 for i ¢ Op. Assume we know the cross-section

correlation structure in the error terms and they are only weakly dependent EL then the plug-in

estimator éFt for the asymptotic variance in 1s consistent and yields
VT, *(F,— (H)'F) % N, L,). (12)

Theorem states that the convergence rate of the estimated factors is v/N, which is the same as
the conventional PCA. Similar to the estimated loadings, the asymptotic distribution of estimated
factors is determined by two terms: the cross-section weighted average of \;e;, the first term in
the RHS of Equation , and the difference between the time-specific rotation matrix and the
unified rotation matrix (1), the second term in the RHS of Equation . When the data is

fully observed, the asymptotic distribution of F; is driven by the first term and the second term

24This assumption can be replaced by an appropriate sparsity assumption with a corresponding threshold estimator.
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vanishes as in |Bai| (2003]). The second term has mean 0 and its variance is increasing in the number
of missing observations. The asymptotic normal distribution comes from the two asymptotically

independent terms in Assumptions [3}4 and [3]6.

Theorem 4. Under Assumptions then for each t and i as N,T — oo:

SnT(Cit = Ci) = Onr(hi— HX)T(H) '+ onr(HX) T (Fy — (HT) 7 F) + 0p(1)  (13)
62
4 N (0, NENEHT 4 (B @ DOx(F @ D)Z'A
52
+ N TSR @0 O] © D2 o D)5 'SR ) (14)

where @t = XIE and Cy = )\iTFt. Furthermore, for consistent estimators fAi as in Theorem

and C:)Ft as in Theorem@ we have
lvrx ~ 1~ =\ Y2 d
<T)\iT@Ft)\,- + NFtTF,\iFt> (Cit — Cit) = N(0,1). (15)

Theorem [ states that the asymptotic distribution of the estimated common component is
determined by the asymptotic distributions of both the estimated loadings and factors. It depends
on the order of N and T" which distribution dominates. If N is of a smaller order, the asymptotic
distribution of the factors dominates; if T is of the smaller order, the asymptotic distribution of

the loadings dominates; otherwise both distributions contribute.

4.3 Test of Treatment Effects

The asymptotic results in Section [£.2] in particular Theorem[d] can be used to answer the important
question in causal inference, whether a unit’s treatment effect at a particular time period, denoted
as T;, is significant or not. We assume the potential outcome for both the control and treated have
an approximate low-rank structure. The treatment effect for unit i at time ¢ is 7, = CI7et — Cftt”.
In this paper, we want to test if the treatment effect 7; is significantly different from 0 as in

Equation (6). In the following, we discuss how to estimate and test 7 for two cases:

1. Control factors F"! and treated factors F'¢% are different, that is, F"! and F** span

different vector spaces.

20



2. Control factors F" and treated factors F¢% are the same, that is, F and F*"% span

the same space.

4.3.1 Control and Treated Panel Have Different Factors

When Fer and Ftreat are different, we estimate a factor model from the incomplete control panel
and another one from the incomplete treated panel using the estimation approach in Section[2] This
means we apply our estimation approach twice where we either view the treated units as missing
values to obtain the loadings and factors for the control or we view the untreated units as missing
values to obtain the loadings and factors for the treatment. We can directly extend Theorem [ to

obtain the asymptotic distribution of the estimated treatment effect 7 = 53” eat _ @Cg”.

Theorem 5. Assume the control panel Y¢ and the treated panel Y both follow Assumptions |13

For each i and t, as N,T — oo, we have

SNT (;,v_zt N Tz’t) _ 5NT( ~Zttreat o ngtreat) B 5NT( Nicttrl o icttrl)

= N0, M + Mire) (16)

where ME™ and M are the asymptotic variances of Sn7(CE™ — CE4™Y and Sy (Chreat — Clreat)

defined in . Furthermore, we have

2% N(0,1), (17)

where 67, = Mg + M{reet with Mg™ = F(A")TOpen A 4+ 5 (FF) TTyeon FE, MFest =

1 (Ytreat\T Q Ytreat 1 (ptreat\ T Ttreat 2 aretrl 2 prtreat ;
7 (A) T O prrear N[O 4 5 (FF7) Dyereat B, and 03 M™ and o3 M “™ are consistent es-

timators of Mﬁm and Mo,

The asymptotic distribution of 7;; —7;+ depends on the asymptotic distributions of éfg" eat _ Ctreat
and 6’5” - C’ff”. The asymptotic distributions of 6’3 eat _ Cf[ cat and 6’5” - C’ﬁ” depend on e% cat
and eff” respectively. For each i and ¢, we observe at most one of X/ and Xftt’"l . Hence, the
asymptotic distributions of 6:[ eat _ Cltreat and 6{"5“ — Ct are asymptotically independent. As

a result, T;; — 7+ is asymptotically normal with the asymptotic variance being the sum of the

asymptotic variances of Ci/¢e — Ctreat and C¢rl — ogirt,
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Theorem [3] allows us to test individual treatment effects for each 7 and ¢ which is novel in the
literature on causal inference for panel data@ In many empirical applications, the object of interest
is a unit’s average treatment effect over time (Abadie et al., [2010, 2015; Doudchenko and Imbens,

2016; Li and Bell, [2017). That is,

! T _ ! T A
Ho : 7o 2ot=my, 41 Tit =0 M g Dy 41 Tit 7 0, (18)

where Ty ; is the last time period with control observations for unit i We estimate T%Toz ZwiTo,i 41 Tit
by the plug-in estimator T%TOZ ZthTO,i 41 7it- We need an additional assumption for the CLT on

the subset of the treated data which is closely related to Assumption

Assumption 4. For Ty; < T satisfying T — Ty; — oo, it holds

1 T P
1. 7T*To,z‘ ZTo,rH Ft — UF.

T d
\/T%TM ZTMH Fieiy — N(0,¥;).

1 T 1
3. VN(T—To.) Zt:To,i—l—l Zje(’)t m)‘jeﬁ = 0p(1)

1 N 1 T Wit AjA ] T d
4- VN Zj:l <T—T07i thTo,ﬁl (P(mj/jtjzljs) - )‘j)‘j ) Ft) — N(07 GA,i)-

Assumption [4]is an extension of Assumptions[3]4 and[3]6. It is used to show that the time-series
weighted average of estimated common components and imputed values is asymptotically normal as
in Lemma[I] and Theorem [6] Then, we have the following result about the asymptotic distribution

. . . 1 T ~
of the estimated time-series average treatment effect T—To, Zt:TO,i 11 Tit-

Lemma 1. Assume the control panel Y¢ and the treated panel Y both follow Assumptions . As
N,T,T —1Tp,; — oo, for each i, the average estimated common component for the control C’ftt” and

treated CL°™ has (for notation simplicity, we omit the superscript ctrl and treat in the following)

ONT T ~ .
T—To, Zt:To,i+1 (Czt -G )
d

% N (0 SFO0SEN + T TR @+ (0 @ DERd(A @ D)TFSEer)  (19)

2For example, if we want to test Ho : 7+ = 0 for some i and ¢, we reject Ho if |Tit /5, | is larger than 1.96 for the
two-sided test (or larger than 1.645 for the one-sided test) at 95% confidence level.
26For the one-sided test, Hy : T%Tm Z;‘F:To,ﬁl Ti¢e >0 or Hi: T+TU7 ZtT:To,iJrl Tie < 0.
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where ©; and Ef; are defined in Assumption @ and Oy ; s defined in Assumption @ Denote the

asymptotic variance in Equation (@ as M;. Then we have for the average treatment effect

T

1 1 d
— i+ | — N(0,1), 20
&, Z (GO > (0,1) (20)
v = To,i+1 t=Tp,;+1
where o a = M; Mt +M; Mtreat (52 M Mt and 52 7 M; M!Teat gre consistent estimators of M ctrl ond Mfreat,

Agetrl _ Netri\T Yctrl 1 Toctrl
Mt = LX) TO peort ;XS +N(T o Lt 71 ) Dyger (T To7 iy 1 F )’
Artreat — 1 (Ntreat\T Ytreat Ttreat Ttreat
M’i — T()\’L ) @At"'eat,i)\i + W (T TO ; Zt TO i+1 F ) F)\tveat (T TO P Zt TO i+1 F >,
F)\lgt'rl and F)\zreat are defined in Theorem @ and @Amz,i and @Atreat’i are defined in Lemma |14 in

the Appendizx.

4.3.2 Control and Treated Panel Share the Same Factors

When the control and treated panels share the same set of factors, we can write the potential
outcome for the control as X&™ = Crl 4 el = (AIH)TF, + eéf™ and the treated as X[t =
Clreat 4 elreat — (\treat)T [ 4 efreat While the factors are the same, we allow the loadings A$™ and
Alreat t6 be different. The implication of this setting is that the treatment does not affect the latent
factors, but only affects the units’ exposure to factors. For example, in our empirical study about
the publication effect of anomalies, the no-arbitrage principle implies the existence of a stochastic
discount factor (SDF) that is spanned by the same latent factors and can price all assets. Our
SDF does not change after publications, but the anomaly’s exposure to this SDF captured by the
loadings may change after publications. Hence, the average returns or exposure to risk factors can
be affected by the publication as the portfolios load on different parts of the SDF after investors
become aware of an anomaly.

When the majority of the observations are control observations as in most causal inference
applications such as our empirical study and |Abadie et al| (2010, [2015)), we estimate the factor

model from the incomplete control panel X", Assuming a permanent treatment effect, we can
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use ordinary least squares (OLS) to estimate the loadings for treated X’Z?Te“t

-1

T T
Xz;reat _ Z ﬁtﬁt'r Z FXtreat’ (21)
t=Tp ;+1 t=Tp ;+1

where T; is the treatment adoption time for unit ¢ and T is the total number of periods. The
common components for the treated panel can be estimated by 5f[ eat — (X?e“t)TE. We have the

following lemma to show the asymptotic distribution for é’ft’“ eat

Lemma 2. Assume T —Ty; — oo for To; < T and define 512V,T—T0¢ = min(N,T — Tp;). Under

Assumptions we have

62 )
SN Tol(c"eat Clreaty 4 <o, S (Nreat\ T WDy 4 (B @ 1O (Fy @ 1))S, P atreat
+1§}TTT01FJ2;1\1:,-2;1F,5.) (22)

Similar to Theorem [4] there are two terms in the asymptotic distribution. For (I'—Tp;)/N — 0
or N/(T — Tp;) — 0 only one term remains; otherwise both of them contribute. One question of
interest is whether the average common component over time changes by the treatment. That is

to test

T T
1 1
H05 E : (Cctrl Ctreat) 07 rHl . § : (Cctrl Ctreat) 75 0.
T="Toi, 77 T=Toi 77

T

Note, that T%Toz ZtT:TO 11 Cit = (1)1, (To..+1):7 (with the superscript to be either ctrl or

treat). We can generalize 1 to a generic Z and let
! T Ty T
B = (2T 2 ZTC g and BT = (27 2) 2T CN g

and test

HO . B@gztrl _ Béﬁreat le . Bictrl 7& l@freat_

2"If units switch between treatment and control, we can modify Equation 1) to Xﬁre“t

~ e\ —1 ~
(Zzesi FtFtT) Zt:Si Fi X' where S; it the set of indices for the treated observations. Lemma [2| can be
adapted accordingly.
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We require the additional weak assumption that links the regressors with the approximate factor

model.

Assumption 5. For Ty; < T satisfying T — Ty; — 0o it holds for Z € R(T—To.)xL

1 i\f: ET: WA\
VN 4 P (Wj =1]|A)

—~ m}) FZ) 5, (Z272)7" | % N(0,04,2)
Jj=1 \t=Tp;+1

We obtain feasible estimates by regressing the estimated common components CN’ﬁ’"l and éf[ cat

on the observed covariates Z to estimate the coefficients

ﬁictrl _ (ZTZ)ilzTC'Ct(TIQOJ-{-l);T and ﬁfreat — (ZTZ)ilzTC{Té%fi—l—l):T'

i, i

Equipped with Lemma [2[ and Theorem [4] we can show the asymptotic distributions of Ef”l,
Ef”eat and Eict’"l — Bf’"eat. Here, we present the distribution for Eict’"l — Bf’"eat and delegate the

distributions for the individual Bfm and Bf"eat to the Appendix.

Theorem 6. Suppose Assumptions hold and T — Tp; — oo
-y (27 2)7 2T MZ(Z" 2)7 4 M) (B Bireety — (5t~ pireet)) b N (0.1) (28)

where M is a (T — To;) x (T — To;) matriz with

0%
Mt—To,i,t—To,i :wFlﬁTz;ﬁlle(q}i + (()\tz;trl)"l' ® I)EF,i()\ftTl Q I))EXIEEIFt
5]2V,T—T07i Tl 1
WE Yp Ui By
5J2V T—To,:
Mty o=ty =B SRS (@ 4+ ()T @ DER(N™ @ 1) S Fy
612V,T7T07,‘ Teol 1
T_iTOJFt Yp Wik Fy
512\7 T—-Top,;
MZ,lm :’T‘M(Agtﬂ _ Agreat)szlgA,i,Z,lmle()\;‘:trl _ )\zreat)

Given the asymptotic distribution for Bg”‘l and Bg*eat in Lemma |§|7 we can test if 3; is affected

by the treatment, that is, if Bft” and (/"¢ are the same or different. As an example, for Z = 1,
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we can use ([23|) to test if the average treatment effect is 0, and then in Equation (23)), we have

_ T-To,s
(ZTZ)/(ZTMZ)7V? = e —

- \/thl Semt ¥ Mts‘

5 Feasible Estimator of P(W;|S)

We provide a feasible estimator for P(W;|S) which we need in to estimate the factors. If
the estimator satisfies P(Wy|S) = P(Wy|S) + Op (min (TIN’ ﬁ)), then the estimation error of
ﬁ(Wit\S ) can be neglected and does not affect the asymptotic distributions of estimated factors F,
and common components @t. Then, Theorems |3| and |4] continue to hold if we use P (Wi|S) in .

As previously mentioned, we could set S = A, i.e. consider P(W;|A). Then, the observation
pattern can depend on all unobserved unit-specific attributes. However, the major challenge is
to estimate the probability P(W;|\;) as we do not observe the latent features \;. If we use the
estimated features Xi, whose estimation error is of the order O, (ﬁ) based on Theorem the
estimation error for the observed probability is of an order of at least O, (\/iﬁ) Hence, the
estimation error of ﬁ(VVltﬁl) would contribute to the asymptotic distributions of F, and Cj.

In order to avoid this issue, we condition on observed covariates S. These covariates can have
the same span as the latent factors, but do not suffer from the estimation error. In the following
we discuss three cases for a feasible estimator of P(W;|S).

In the first case, we assume that the probability of observing an entry does not depend on unit
specific features, i.e. P(Wy|S) = P(W;;). Then, we can estimate P(W;;) by % The convergence
rate of the estimated probability P (Wi) is % If VT /N — 0, which is also assumed in Theorem
then the estimation error of ﬁ(Wzt) is of the order o, (min (\}—N, ﬁ))

In the second case, P(W;|S) = f(S) we allow for unit specific features where we can use the full
observation matrix to estimate f(S). Since we have NT observations, if we impose a parametric
form on f(S), for example a logit model, then f(S) can be consistently estimated at the rate v NT.
Alternatively, if we do not impose a functional form f(S), we can use a nonparametric regression
to estimate f(S). This probability can be consistently estimated at the rate \/m,
where hy,--- , h, are the bandwidths for 1st, 2nd, ..., p-th coordinate in . When NThihs - - h, >
max(v/T,vN), the estimation error is of the order Op (min (ﬁ, %))

In the third case, when S only takes finitely many values, then I3(Wit|,5’ =3) = N, where
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N, = Zf\il 1(S = s) and Ogy = {i : Wy = 1 and S = s}. The convergence rate is N% When
N, > max(v/T,VN) for all s, the estimation error is of the order Op (min (ﬁ, ﬁ))

6 Simulation

In this section, we demonstrate the finite sample properties of our asymptotic results for both
the observed entries and the missing entries. We confirm the theoretical distribution results for
the factor, loadings and common components and show that without the proper reweighting and
variance correction term the asymptotic distribution is severely biased.

We generate the data from a one-factor model for 2,000 Monte Carlo simulations:

Xi =\ Fy+ei

where F; "< N(0,1), A; b N(0,1) and e; b N(0,1). We study two missing patterns

1. Data is randomly missing.

2. Staggered adoption with irreversible treatment: The probability of missing observations de-

pends on the unit specific features and once not observed the unit’s observations stay missing.

6.1 Asymptotic Distribution

For both observation patterns, the finite sample distribution results of our estimators work well.
The main text presents the results for the randomly missing observations while the Appendix
collects the results for the staggered adoption case.

In the randomly missing case, the observation matrix W is generated from W;; ~ Bernoulli(p),
where p = 0.5 or 0.9. Figure [2| shows the histogram of the standardized common components for
randomly selected observed entries and missing entries. We present the corresponding histograms
of the standardized estimated factors and loadings in Figures and in the Appendix. The
estimates are centered and standardized using consistent estimates of the theoretical mean and

standard deviation. %]

28We use Cjy (/\iTFt) as the theoretical mean in Figure Moreover, because we know H in the simulation, we
use HF; and (H")™'\; as the theoretical means in Figures and in the Appendix. The theoretical standard
deviations are calculated based on the plug in estimators for Fy, \; and e;;. If (i,t) € O, €&x = Xt — N F} is a
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For the staggered adoption pattern, the observation matrix W is generated from the following

scheme:
1. All the observations before Tj are control observations. That is, for ¢ < Ty, it holds W;; = 1.

2. After Tjy, if unit ¢ is not treated at time ¢t — 1, the probability for this unit to stay in the

control group at time t > Ty is P(Wy = 1|\, W1 = 1) = )ﬂ where \; is a

1
1+4 exp(0.1\;

scalar. If unit 7 is treated at time ¢ — 1, then it stays treated at time t > Tj.

Figures in the Appendix show histograms of the standardized estimated factors, loadings and
common components for randomly selected observed entries and missing entries. The histograms
match the standard normal density function very well and support the validity of our asymptotic

results in finite samples.

(a) (250, 500, 0.5, 0) (b) (250, 500, 0.9, 0) (c) (500, 250, 0.5, 0) (d) (500, 250, 0.9, 0)
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(e) (250, 500, 0.5, 1) (f) (250, 500, 0.9, 1) (g) (500, 250, 0.5, 1) (h) (500, 250, 0.9, 1)

Figure 2: Randomly Missing: Histograms of estimated standardized common components. The
normal density function is superimposed on the histograms. P(W;; = 1]|A;) = p for any ¢ and
t, where p = 0.5 and 0.9 in the simulation. The caption in the sub-figures denotes a tuple of
(N7 T7p7 Wzt)

6.2 Estimation Without Reweighting or Variance Correction

Our simulations confirm that without proper reweighting the estimates are severely biased. Here,
we plot the histograms of the standardized estimated factors, loadings and common components

similar as in the last subsection for randomly missing data, but instead of using the reweighting

consistent estimator for e;;.
29Here we assume S = A.
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scheme in to estimate the sample covariance matrix and the weighted linear regression in (3))
to estimate the factors, we use %5( XT as the sample covariance matrix and conventional PCA
estimators. Figure [3|shows that the asymptotic distributions of the estimated factors, loadings and
common components from the conventional PCA estimators in the presence of missing data. We
can see that our method is critical to get the correct asymptotic distributions for the latent factor

model.

(d) Ft: Wit =0 (e) /\z Wit =0 (f) Citi Wit =0

Figure 3: Randomly Missing: Histograms of estimated standardized factors, loadings and common
components, where the factor model is estimated with conventional PCA. The normal density
function is superimposed on the histograms. The observation probability is 0.5, N = 500 and
T = 500.

The simulations demonstrate that without the variance correction term the asymptotic stan-
dard errors are too small. We plot the histograms of the standardized estimated factors, loadings
and common components for the randomly missing observation pattern, but without correcting
the variances with the additional terms in Theorems Without the variance correction term,
the asymptotic distribution has a too low variance compared to the Monte Carlo simulations, as
illustrated in Figure ] Thus, the additional variance term cannot be ignored in the asymptotic

distributions of the estimated factors, loadings, and common components.
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Figure 4: Randomly Missing: Histograms of estimated standardized factors, loadings and common
components, where the variances are not corrected by the additional variance terms in Theorems
The normal density function is superimposed on the histograms. The observation probability
is 0.5, N =500 and T = 500.

7 Empirical Study: Publication Effect on Anomaly Returns

There is an ongoing debate in asset pricing whether academic publications result in the disappear-
ance, reversion or attenuation of anomalies in equity returns. An anomaly describes a pattern in
average returns that cannot be explained by a benchmark asset pricing model as for example the

Capital Asset Pricing Model (CAPM). (2003) finds that anomalies including size effect,

value effect, weekend effect and dividend yield effect seem to have disappeared or lost the pre-

dictive power after they were published. McLean and Pontiff (2016) suggest a 32% lower return

from publication-informed trading. Harvey et al. (2016)) suggest that the publication returns are

biased upwards because of journals’ preference for large t-statistics. (Chen and Zimmermann| (2018)

measure that 12% of the anomalies’ returns are due to the publication bias while 35% are due to
mis-pricing that can be traded away after the anomalies are discovered.

In this paper, we study if the publication in an academic journal has a significant negative

effect on the risk premium of anomaly portfolios. We use the data of [Chen and Zimmermann|

(2018)°Y| which contains monthly returns for characteristic-sorted quintile portfolios from July 1963

30We thank the authors for sharing the data. We refer to their paper for the details of the data collection. The
data is available on the website https://sites.google.com/site/chenandrewy/home?authuser=0
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to December 2015. Each anomaly is based on a firm-specific variable, e.g. the size or book-to-
market ratio. All U.S. stocks are sorted into five quintile portfolios based on the cross-sectional
rank order of the firm-specific characteristic values and the composition is regularly updated. Long-
short portfolios that buy the highest quintile and sell the lowest quintile portfolio are a standard
procedure to construct “risk factors” that exploit the risk premium in these strategies. Most of
these strategies have a large average return, i.e. these are zero cost portfolios, that provide a
positive average payoff with a high probability. Our data set consists of a panel with 111 long-short
portfolios and 630 time-series observations. Appendix contains a detailed description of all the
anomaly portfolios sorted by the publication effect as described next.

We define the “treatment” as the publication of an anomaly strategy in an academic journal.
The returns of portfolios before publication are the control observations, while the returns after
publication serve as the treated observations. Figure |5 shows the observation patterns for the
control and treated panels. The control panel in Figure uses only returns before publications
and treats the post-publication returns as missing values as indicated by the shaded entries@ This

pattern is reversed for the treated panel in Figure [5b] that only uses entries after the publication.

Anomaly
Anomaly

Time Time
(a) Control panel (b) Treated panel

Figure 5: Observation patterns for the control (before publication) and treated (after publication)
panels. The shaded entries represent the missing entries.

Under the assumption of no-arbitrage and complete markets, there exists a unique stochastic
discount factor (SDF) that can price all assets. In an approximate factor model this SDF is spanned

by the latent factors which can explain well the cross-section of expected returns@ We assume that

31A small number of anomalies have also a few missing values at the beginning of the sample.
32Gee for example(IKozak et al.L |2019|; |Kelly et a1.|, |2018t |Lettau and Pelger|, |2018D.
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the stochastic discount factor does not change by the publication of anomalies, i.e. the same latent
factors describe the returns before and after publication. However, the exposure of the assets to
the SDF can be affected by the publication, i.e. the loadings with respect to the latent factors and
hence also their risk premium can change. Since most observations are available before publication
we estimate the latent factors from the control panel and use the regression method in Section
to estimate loadings and common components after publication. We compare the estimated
returns without and with publication on the time periods after an anomaly has been published to

study the following two questions:
1. Does publication decrease the average returns of an anomaly portfolio?
2. Does publication decrease the pricing error (alpha) against the popular CAPM model?

The first question is related to the observationlﬁ that the mean return is lowered after pub-
lication, i.e. the risk premium of the anomaly decreases. This can be due to mis-pricing of the
portfolios and after investors become aware of this arbitrage opportunity it is traded away. The
second question is related to the fishing for alphas argument, i.e. journals are only willing to publish
an anomaly if it is significant relative to the most relevant benchmark model, the CAPM model,
although it may be just noise. Hence, it is possible that an insignificant anomaly gets published
due to the multiple hypothesis testing problem (Harvey et al.,|2016). Instead of directly comparing
the mean returns before and after publication, which could be different because of time effects,
we estimate the counterfactuals, the returns if the anomaly had not been published, and compare
the returns with and without publication on the same time periods to control for the time effect.
Indeed, we show that the naive comparison of mean returns and pricing errors on the time periods
before and after publication is much more likely to find an effect as the sample mean returns are
in general lower on the latter part of the data set.

In our analysis we assume that the publication of anomalies does not depend on anomaly specific
characteristics S, i.e. P(W;|S) = P(Wj). One reason is that most portfolio specific characteristics
are time-varying and hence cannot be used as a time-invariant covariate S. For example, the size
portfolio includes by construction only stocks with similar size characteristics. However, other firm

characteristics, e.g. their book-to-market ratio, are in general time-varying for this portfolio. It

33Gee (Schwert) [2003; McLean and Pontiff, [2016; [Harvey et al., 2016} |Chen and Zimmermann) 2018)
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is possible that the publication depends on the time-series pattern of certain strategies, but our
estimator in its current form only allows for cross-sectional, time-invariant variables to control for

differences in the treatment probability[*”]

Anomaly

T

Time

Figure 6: The red and green boxes indicate the time periods used to estimate the factor model
before and after publication respectively.

We first estimate the latent factor model from the control returns before publication. We use
the data until the end of 2013 which is the last year for which we observe unpublished anomalies,
as indicated by the red box in Figure [6] This provides us with the common components of the
control before and after publication and the latent factor time-series from 1963 to 2013. Note,
that the latent factors are a weighted average of control returns. For the latter years, there are
only very few control return time-series which results in noisy time-series for the latent factors@
In order to strike a balance between a precise estimation and using as much data as possible, our
benchmark analysis will test for treatment effects until the year 2010. We confirm that our results
are robust to changing the time horizon. Given the latent factor time series, we run regressions
on the treated return time-series to obtain the loadings and common components for the treated
returns after publication. Then, we calculate the mean returns or pricing errors on the time period
after publication until 2010 for the control and treated data as indicated by the green box in [6]

We apply Theorem|[6]to obtain the test statistics for the mean return and pricing error effect. For
Z = 1 we test whether the mean return is significantly affected by the publication. For Z = [T, F.),

where F}, is the observed excess return of the market factor, we test whether the pricing error, the

31We are currently working on extending our theoretical and empirical framework to include time-varying cross-
sectional features S;;. However this is beyond the scope of this paper.
35In fact, the latent factors from 2011 to 2013 are the weighted average of fewer than 11 control returns.
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coefficient corresponding to the intercept I, is significantly affected by the publication.
Figure[7]illustrates the counterfactual outcomes for three anomalies that experience a significant
publication effect in their mean returns. Figure collects the corresponding results for the 13
anomalies that exhibit the statistically strongest treatment effect on their mean returns and the
five most prominent anomalies in the literature, namely size, value, investment, profitability, and
momentum. The blue line plots the common component of returns based on the latent factors
estimated on the control data. This means the blue line after the publication date are imputed
values that serve as the counterfactual outcome. The orange line are the cumulative returns of the
common component after publication based on the loadings estimated on the treated panel. The
green line are simply the cumulative returns of the observed price process after publication. Note,
that in an approximate factor model the risk premium should be fully captured by the common
component and indeed the orange line is very close to the green line but less wiggly as it averages
out some idiosyncratic noise. The large difference between the blue and orange lines confirms the

statistical finding that the publication significantly affects their mean returns.
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Figure 7: Publication effect: Cumulative returns of (in blue) control common component 5’5}”’1
before publication and counterfactual after publication, (in orange) treatment common component
C!reat after publication and (in green) observed X;; after publication. 10 latent factors.

Figure [§ shows the variation explained and the maximum Sharpe ratio of the SDF for different
number of factors on the control dataﬂ The marginal increase of the variation explained and the
maximum Sharpe ratio with more than 10 factors is very small. A factor model with 6 to 10 factors
seems to capture most of the information in this data set. If not stated otherwise we use 10 latent

factors.

36The Sharpe ratio of the SDF is the maximum Sharpe ratio obtained by mean-variance optimization of all the
estimated latent factors.
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Figure 8: Variation explained and the Sharpe ratio of the SDF for different number of factors on
the control data.

First, the majority of the anomaly portfolios have lower average returns and pricing errors after
publication. Figure [9] collects the publication effect on mean returns and CAPM pricing errors for
all anomalies for different horizons of the treatment effect. The left plots show the t-statistics, while
the right side has the non-normalized differences. The portfolios are sorted by their t-statistics for
the reference year 2010. Over 80% of the differences are positive, i.e. after publication, the anomaly
risk premium is more likely to decrease. The results are very robust to the choice of the final year
of the treatment effect and justify why we can focus our analysis on the year 2010. Importantly, for
the 20% negative differences, the values are economically much smaller than the positive values and
all statistically insignificant for a 95% significance level. On the other hand, the positive publication
effect is economically large with a monthly return ranging from 0.5 to 3%.

Second, only around 14% of the publication effects are statistically significant. Using a one-sided
95% test shows that only 15 anomalies are statistically significantly affected by the publication,
which holds for the mean returns and pricing errors. Due to the multiple testing problem this
number has to be viewed as an upper bound. When correcting the critical value for multiple
testing, there are even fewer portfolios with a significant publication effect. This result is not
surprising as we are correctly taking into account the uncertainty in the estimation. The time
periods after publication are relatively short, while the mean estimation itself is known to have
high standard errors. In addition, there are relatively few control anomalies that have not been

published in the later part of the data set. Hence, it cannot be avoided that the counterfactual
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outcome is relatively noisy which further increases the variance of our test statistic. In summary,
because of the nature of the data, we show that the bar for classifying a publication effect as

significant has to be put quite high.

Publication Effect Mean Returns (t-statistics)

Publication Effect Mean Returns

t-statistics

Differences in means

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Portfolio Portfolio

(a) Differences in mean returns and corresponding t-statistics
CAPM Alpha (t-statistics) CAPM Alpha

3.5

3

2570

t-statistics

Differences in alphas

Portfolio Portfolio

(b) Differences in pricing errors (CAPM alpha) and the corresponding t-statistics

Figure 9: Publication effect: Differences and corresponding t-statistics with the last year to test the
treatment effect ranging from 2010 to 2013. Portfolios are sorted by their t-statistics for differences
in mean returns in 2010 in descending order. Left panels show the t-statstics for differences in
means and pricing errors. Right panels show absolute differences in means and pricing errors.

Third, the pricing error and risk premium effects on the mean are very much aligned. The top
and bottom plots of Figure [0] are very close to each other. This is not surprising as the long-short
factors are constructed to be “market neutral”, and hence most of their mean returns should not
be explained by a market portfolio. Hence, most of our findings about mean returns directly carry

over to CAPM alphas.
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Figure 10: Publication effect. Left plot: Pricing error (CAPM alpha) t-statistics estimated on the
control (without publication) observations before publication (light blue), treated (with publication)
observations after publication (dark blue), estimated control observations after publication (green)
and estimated treated observations after publication (black). Pricing errors have higher t-statistics
when estimated before publication. Right plot: Naive treatment effect based on difference in mean
returns or pricing errors before and after publication (light blue and green line) and synthetic
control treatment effect using only observations after the publication (dark blue and black line).
Portfolios are sorted by their t-statistics for differences in mean returns in 2010 in descending order.
Red lines denote 1% and 5% critical values.

Fourth and importantly, a naive estimation of the publication effect leads to different and
misleading conclusions. Figure [L0| contrasts our treatment effect with a simple comparison of mean
and pricing errors before and after publication without constructing a counterfactual. Note, that
comparing the sample mean of returns before and after publication can suggest a larger publication
effect if sample means are lower in the second part of the data, even for those anomalies that are
not published. This is exactly what happens in our case. The left plot in Figure shows the
t-statistics for pricing errors based on the return date before publication. Not surprisingly, almost
all anomalies are significant as otherwise they would not have been published. The dark blue line
shows the result of the same regression but on the time periods after publication. Substantially
fewer anomalies are significant. However, the before publication returns are a bad control as they
neglect any time effects. In contrast, the green line depicting the results of the counterfactual, i.e.
pricing errors if the anomaly had not been published but calculated on the time periods after its
publication, is much lower. Note, that using the common component or observed returns for the

regression of the treated data give similar results. The right plots confirms that a naive estimation,
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that simply compares means and pricing errors before and after publication, would suggest that
more anomalies have a significant publication effect. The green and light blue line describe the
naive approach that has more spikes above the critical values than our approach. These spikes also
occur for very different anomalies compared to our approach. On a 1% confidence level the naive

approach would suggest a significant publication effect for three times more anomaly portfolios.
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Figure 11: Publication effect: t-statistics for 6 to 10 latent factors. The red dashed-line is the
critical value for a one-sided test of a negative publication effect. Results for the 13 anomalies with
the statistically largest effects and the 5 most prominent anomalies.
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Figure 12: Publication effect: Mean returns C§'"" and C!"** and CAPM pricing errors B;t{l and
ﬁqu“t under a 10-factor model. Results for the 13 anomalies with the statistically largest effects
and the 5 most prominent anomalies.

Fifth, we zoom in and present the detailed results for the 13 anomalies with the statistically
largest effect and the 5 most prominent anomalies. Figure [11]shows the ¢-statistics for 6 to 10 latent
factors spanning the SDF. It is apparent that both, the effect on mean returns and the pricing errors,
are robust to the choice of the number of latent factors. Importantly, for sufficiently many latent
factors neither of the “classical” anomalies size, value, profitability, investment, and momentum
is significantly affected by their publication. This suggests, that these anomalies represent the
systematic risk that requires a risk premium and which is part of the SDF. Some of the anomalies

whose risk premium disappear after publication are less “standard”, e.g. advertisement expenditure.
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This is suggestive that these were either arbitrage opportunities that were traded away by informed
investors or their detection was simply spurious.

Lastly, we highlight the distinction between statistical and economic significance. Figure
shows the mean returns and pricing errors for the same subset of anomalies as Figure [II} The
statistically significant portfolios also have economically significant differences ranging from 0.5
to 3% monthly returns. However, an economically large difference does not necessarily turn into
statistical significance when correctly accounting for the uncertainty. For example, the size portfolio

experiences an effect of around 0.5% which is insignificant because of its volatile time-series as shown

in Figure [I3]

8 Conclusion

In this paper, we propose a method to estimate a latent factor model from partially observed
panel data. The estimation is based on an adjusted covariance matrix estimated from the partially
observed panel data. We derive the inference theory for the estimated factors, loadings, and common
components. The asymptotic variance of the estimators is larger than that from the fully observed
panel. In particular, there is an additional variance correction term in the asymptotic variance
compared with the fully observed panel. Based on the inferential theory, we construct a test for
the treatment effect for each unit at any time. In our empirical analysis of anomaly long-short
portfolios we find that around 14% of the portfolios returns are significantly reduced by academic

publication.
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9 Appendix

9.1 Empirical Results
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Acronym Description Authors Start Date Publication C¢" — gtrest Qetrl _ gitreat getrl _ gtreat  petrl _

t-stats mean t-stats mean
EarnSurp Earnings Surprise Foster et al 1963/07 1984 2.75 2.43 2.76 2.44
AdExp Advertising Expense Chan et al 1963/07 2001 2.70 0.74 2.75 0.75
PriceDelay Price delay Hou and Moskowitz 1963/07 2005 2.32 0.44 2.37 0.45
KZ Kaplan Zingales index Lamont et al 1963/07 2001 2.29 1.37 2.30 1.38
NOA Net Operating Assets Hirshleifer et al 1963,/07 2004 2.17 1.01 2.15 1.00
GrSaleToGrInv Sales growth over inventory growth Abarbanell and Bushee 1963/07 1998 2.11 0.36 2.13 0.37
Accruals Accruals Sloan 1964/06 1996 2.09 0.37 2.06 0.36
RevenueSurprise Revenue Surprise Jegadeesh and Livnat 1963/07 2006 2.04 1.02 2.03 1.01
Tax Taxable income to income Lev and Nissim 1963/07 2004 2.03 0.89 2.10 0.92
ChFinLiab Change in financial liabilities Richardson et al 1963/07 2005 1.99 0.63 2.05 0.65
IndRetBig Industry return of big firms Hou 1963/07 2007 1.87 3.47 1.87 3.46
Seasonality Return Seasonality Heston and Sadka 1963/07 2008 1.75 1.63 1.75 1.63
RIO_IdioRisk Inst Own and Idio Vol Nagel 1963,/07 2005 1.74 1.43 1.76 1.44
AssetTurnover Asset Turnover Soliman 1963/07 2008 1.72 2.31 1.72 2.31
RD R&D over market cap Chan et al 1963/07 2001 1.67 1.10 1.67 1.11
DivOmit Dividend Omission Michaely Thaler Womack 1963/07 1995 1.60 0.49 1.57 0.48
ChNWC Change in Net Working Capital Soliman 1963/07 2008 1.59 0.64 1.59 0.64
GrGMToGrSales Gross Margin growth over sales growth Abarbanell and Bushee 1963/07 1998 1.54 0.35 1.58 0.36
Spinoff Spinoffs Cusatis et al 1963/07 1993 1.47 0.50 1.49 0.50
NetDebtPrice Net debt to price Penman Richardson Tuna 1963/07 2007 1.42 1.90 1.42 1.90
BM Book to market Fama and French 1963/07 1992 1.39 0.94 1.35 0.90
Mscore Mohanram G-score Mohanram 1964/01 2005 1.38 0.75 1.42 0.77
OperProf operating profits / book equity Fama and French 1963/07 2006 1.37 1.02 1.40 1.05
EarnSupBig Earnings surprise of big firms Hou 1963/07 2007 1.36 1.28 1.36 1.27
SurpriseRD Unexpected R&D increase Eberhart et al 1963,/07 2004 1.35 0.59 1.33 0.59
Herf Industry concentration (Herfindahl) Hou and Robinson 1963/07 2006 1.34 0.83 1.34 0.82
CFPinc Cash flow to market Lakonishok et al 1963/07 1994 1.31 0.59 1.33 0.59
RoA earnings / assets Balakrishnan, Bartov, Faurel 1963/07 2010 1.29 3.51 1.24 3.86
GrSaleToGrOverhead Sales growth over overhead growth Abarbanell and Bushee 1963/07 1998 1.28 0.53 1.32 0.55
RIO_Turnover Inst Own and Turnover Nagel 1963/07 2005 1.26 1.19 1.25 1.17
ChDeprToPPE Change in depreciation to gross PPE ~ Holthausen and Larcker 1963/07 1992 1.25 0.27 1.25 0.27
Chlnventory Inventory Growth Thomas and Zhang 1963/07 2002 1.23 0.31 1.24 0.31
BMent Enterprise component of BM Penman Richardson Tuna 1963/07 2007 1.20 0.61 1.20 0.61
SalesToPrice Sales-to-price Barbee et al 1963/07 1996 1.18 0.75 1.20 0.75
ChATurn Change in Asset Turnover Soliman 1963/07 2008 1.15 0.45 1.15 0.45
OperLeverage Operating Leverage Novy-Marx 1963/07 2010 1.10 1.99 1.01 2.11
BPEBM Leverage component of BM Penman Richardson Tuna 1963/07 2007 1.08 0.42 1.09 0.42

Table 2: Summary statistics of the anomaly portfolios (publication effect until 2010).
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Label Name Authors Start Date Publication C¢" — Ctreat getrl _ gtreat getrl _ gtreat  petrl _ g,

t-stats mean t-stats mean
IdioRisk Idiosyncratic risk Ang et al 1963/07 2006 1.04 1.52 1.07 1.57
Mom1813 Momentum-Reversal De Bondt and Thaler 1963/07 1985 0.88 0.60 0.74 0.50
InvToRev Investment Titman et al 1963/07 2004 0.87 0.27 0.85 0.27
SalesGr Revenue Growth Rank Lakonishok et al 1963/07 1994 0.87 0.19 0.93 0.20
CompDebtl Composite debt issuance Lyandres Sun Zhang 1963/07 2008 0.73 0.35 0.74 0.35
ChlnvestInd Change in capital inv (ind adj) Abarbanell and Bushee 1963/07 1998 0.72 0.18 0.75 0.19
DivInit Dividend Initiation Michaely Thaler Womack 1963/07 1995 0.72 0.17 0.81 0.19
Mom1m Short term reversal Jegedeesh 1963/07 1989 0.72 0.59 0.74 0.62
EffFrontier Efficient frontier index Nguyen and Swanson 1963/07 2009 0.61 1.19 0.51 1.05
ExchSwitch Exchange Switch Dharan and Ikenberry 1963/07 1995 0.57 0.22 0.49 0.19
Tangibility Tangibility Hahn and Lee 1963/07 2009 0.56 1.61 0.62 1.76
ChLTI Change in long-term investment Richardson et al 1963/07 2005 0.53 0.13 0.53 0.13
RIO_BM Inst Own and BM Nagel 1963/08 2005 0.49 0.41 0.48 0.41
Sharelsb Share issuance (1 year) Pontiff and Woodgate 1963/07 2008 0.46 0.45 0.46 0.45
Mom12m Momentum (12 month) Jegadeesh and Titman 1963/07 1993 0.45 0.49 0.53 0.58
IntanEP Intangible return Daniel and Titman 1963/07 2006 0.44 0.25 0.42 0.24
Highb52 52 week high George and Hwang 1963/07 2004 0.43 0.45 0.47 0.49
MaxRet Maximum return over month Bali et al 1963/07 2010 0.42 1.03 0.38 1.05
Size Size Banz 1963/07 1981 0.39 0.47 0.29 0.36
RoE net income / book equity Haugen and Baker 1963/07 1996 0.36 0.15 0.41 0.17
EP Earnings-to-Price Ratio Basu 1963/07 1977 0.35 0.26 0.27 0.20
Mom36m Long-run reversal De Bondt and Thaler 1963/07 1985 0.33 0.26 0.25 0.19
ChPM Change in Profit Margin Soliman 1963/07 2008 0.33 0.18 0.33 0.18
OrderBacklog ~ Order backlog Rajgopal et al 1970/12 2003 0.31 0.34 0.44 0.49
EarnCons Earnings Consistency Alwathainani 1963/07 2009 0.28 0.26 0.32 0.31
CFPcash Operating Cash flows to price Desai, Rajgopal, and Venkatachalam 1964/06 2004 0.27 0.18 0.32 0.22
ChNCOA Change in Noncurrent Operating Assets Soliman 1963/07 2008 0.25 0.15 0.25 0.15
Mom6m Momentum (6 month) Jegadeesh and Titman 1963/07 1993 0.25 0.15 0.26 0.16
Price Price Blume and Husic 1963/07 1972 0.23 0.65 0.17 0.47
ChCOA Change in current operating assets Richardson et al 1963/07 2005 0.15 0.06 0.14 0.05
IntanCFP Intangible return Daniel and Titman 1963/07 2006 0.15 0.09 0.13 0.08
MomRev Momentum and LT Reversal Chan and Kot 1963/07 2006 0.13 0.17 0.12 0.16
Leverage Market leverage Bhandari 1963/07 1988 0.12 0.11 0.05 0.04
ChBE Sustainable Growth Lockwood and Prombutr 1963/07 2010 0.10 0.16 0.11 0.19
NetPayoutYield Net Payout Yield Boudoukh et al 1963/07 2007 0.07 0.09 0.08 0.09
DivYield Dividend Yield Naranjo et al 1963/07 1998 0.01 0.01 -0.01 -0.01

Table 3: Summary statistics of the anomaly portfolios (publication effect until 2010).
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Label Name Authors Start Date Publication C°"' — Ctrest getrl _ gtreat getrl _ gtreat  qetrl _ ptreat
t-stats mean t-stats mean
IntanBM Intangible return Daniel and Titman 1967/06 2006 -0.01 -0.01 -0.01 -0.01
VolumeTrend Volume Trend Haugen and Baker 1963/07 1996 -0.01 0.00 -0.04 -0.02
ChCol Change in current operating liabilities Richardson et al 1963/07 2005 -0.03 -0.01 -0.03 -0.01
ProfitMargin Profit Margin Soliman 1963/07 2008 -0.03 -0.04 -0.03 -0.04
DolVol Past trading volume Brennan Chordia Subrahmanyam 1963/07 1998 -0.06 -0.03 -0.08 -0.04
GrCAPX Change in capex (two years) Anderson and Garcia-Feijoo 1963/07 2006 -0.08 -0.04 -0.06 -0.03
VarCF Cash-flow variance Haugen and Baker 1963/07 1996 -0.15 -0.09 -0.15 -0.10
Beta CAPM beta Fama and MacBeth 1963/07 1973 -0.17 -0.46 -0.19 -0.53
BetaSquared CAPM beta squred Fama and MacBeth 1963/07 1973 -0.18 -0.50 -0.21 -0.58
VolSD Volume Variance Chordia Roll Subrahmanyam 1963/07 2001 -0.23 -0.11 -0.20 -0.09
SinStock Sin Stock (selection criteria) Hong and Kacperczyk 1963/07 2009 -0.33 -0.80 -0.25 -0.59
IntanSP Intangible return Daniel and Titman 1963/07 2006 -0.40 -0.26 -0.40 -0.26
Tliquidity AmihudA;s illiquidity Amihud 1963/07 2002 -0.44 -0.21 -0.44 -0.20
ZeroTrade Days with zero trades Liu 1963/07 2006 -0.47 -0.40 -0.45 -0.38
VolMkt Volume to market equity Haugen and Baker 1963/07 1996 -0.49 -0.30 -0.47 -0.28
IndMom Industry Momentum Grinblatt and Moskowitz 1963/07 1999 -0.53 -0.31 -0.54 -0.31
GrLTNOA Growth in Long term net operating assets Fairfield et al 1963/07 2003 -0.60 -0.13 -0.76 -0.16
StdTurnover Turnover volatility Chordia Roll Subrahmanyam 1963/07 2001 -0.63 -0.42 -0.61 -0.41
SEO Public Seasoned Equity Offerings Loughran and Ritter 1970/01 1995 -0.68 -0.35 -0.62 -0.31
ZScore Altman Z-Score Dichev 1963/07 1998 -0.71 -0.44 -0.72 -0.45
AccrualsBM Book-to-market and accruals Bartov and Kim 1967/05 2004 -0.77 -0.77 -0.79 -0.79
MomVol Momentum and Volume Lee and Swaminathan 1963/07 2000 -0.94 -0.72 -0.94 -0.72
Sharels1 Share issuance (5 year) Daniel and Titman 1963/07 2006 -1.00 -0.45 -0.98 -0.43
ChBEtoA Richardson et al 1963/07 2005 -1.08 -0.56 -1.11 -0.57
PayYield Payout Yield Boudoukh et al 1963/07 2007 -1.22 -0.91 -1.23 -0.91
AssetGrowth Asset Growth Cooper et al 1963/07 2008 0.00 0.00 0.00 0.00
BetaTailRisk Tail risk beta Kelly and Jiang 1963/07 2014 0.00 0.00 0.00 0.00
ChTax Change in Taxes Thomas and Zhang 1963/07 2011 0.00 0.00 0.00 0.00
DivInd Dividends Hartzmark and Salomon 1963/07 2013 0.00 0.00 0.00 0.00
EntMult Enterprise Multiple Loughran and Wellman 1963/07 2011 0.00 0.00 0.00 0.00
GrAdExp Growth in advertising expenses Lou 1967/01 2014 0.00 0.00 0.00 0.00
GrEmp Employment growth Bazdresch, Belo and Lin 1963/07 2014 0.00 0.00 0.00 0.00
GrossProf gross profits / total assets Novy-Marx 1963/07 2013 0.00 0.00 0.00 0.00
InterMom Intermediate Momentum Novy-Marx 1963/07 2012 0.00 0.00 0.00 0.00
NumEarnIncrease Number of consecutive earnings increases Loh and Warachka 1963/07 2012 0.00 0.00 0.00 0.00
OrgCap Organizational Capital Eisfeldt and Papanikolaou 1964/12 2013 0.00 0.00 0.00 0.00
PctAcc Percent Operating Accruals Hafzalla et al 1964/06 2011 0.00 0.00 0.00 0.00

Table 4: Summary statistics of the anomaly portfolios (publication effect until 2010).



9.2 Simulation Results
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Figure 14: Randomly Missing: Histograms of estimated standardized factors. The normal density

function is superimposed on the histograms. P(W;; = 1|)\;) = p for any i and ¢, where p = 0.5 and
0.9 in the simulation. The caption in the sub-figures denotes a tuple of (N, T, p, Wj;).
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Figure 15: Randomly Missing: Histograms of estimated standardized loadings. The normal density
function is superimposed on the histograms. P(W;; = 1|\;) = p for any ¢ and ¢, where p = 0.5 and
0.9 in the simulation. The caption in the sub-figures denotes a tuple of (N, T, p, Wj;).
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Figure 16: Staggered Adoption: Histograms of estimated standardized factors. The normal density
function is superimposed on the histograms. The caption in the sub-figures denotes a tuple of
(N, T, Wy).

035

025

020

015

010

(a) (250, 500, 0) (b) (250, 500, 1)

(c) (500, 250, 0)

(d) (500, 250, 1)

Figure 17: Staggered Adoption: Histograms of estimated standardized loadings. The normal den-
sity function is superimposed on the histograms. The caption in the sub-figures denotes a tuple of
(N, T, Wy).
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Figure 18: Staggered Adoption: Histograms of estimated standardized common components. The
normal density function is superimposed on the histograms. The caption in the sub-figures denotes
a tuple of (N, T, Wy).
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9.3 Proofs

Denote W; € RV*1 ag the t-th column in W and W; € RT*! as the i-th row in W; Similarly
e € ]RNXiaS the ¢-th column in e and €; € RT*! as the i-th row in e.
Plug X = (AF') © W + e ® W into

1 ~~ -~ e~
—(xxT ED)A=A
and right multiply V=" on both side, we have

NT ((W OAF)+Waoe) ((FAT) oW'l+e' © WT>> AVl = A

Note that (i, j)-th entry in (WO (AF ) (FAT)oWT), Wo(AF")(e'oW ), Woe)(FAT)®
WT)and (W oe)(e" ©WT) have

((W OAFN(FAY WD) = N F diag(W; ® W;)FA;
(Wo@FN) e owD) = e diag(Wi o W;)Fx,
((W O (FAY oW = X Fdiag(W; © W;)e;
= e diag(W; © W))e;

Then, we have

Y 1 TrT
= w7V Z)\ N F T diag(W; @ Wi)FX;/qi; + ;A ief diag(W; © W;)F;j/qij
+ ZXiAIFTdia9<Wi © Wj)ej/aij + Z Aie; diag(W; © Wj)Fej/qZ’j] (24)
i=1 i=1
Denote H; = 2 LN F T diag(W; © W;)F/q;;.

From Equatlon , we have

~ 1 N o 1 N 1 N
)\j — Hj)\j = V_l <N Z)\fy(’t,j) + N Z)‘zC’J + N g)\znz_] N Z)\ fzy)

=1 i=1

where y(i,7) = E [|Q—1“| ZtEQij eitejt] and

~ .. 1 .
’7(27]) = |Q‘ Z E[eitejt] = ’Y(Za])
g tEQij
1 ~ ..
Gj = T Z eiejr — (i, 7)
U e
1
M = 1041 Z A Fiejq
g teQ;j
1
& = g > A Fiear
Ul ey,



from T'q;; =T - |Q;j|/T = |Qsj]. From Lemma we have HV”H = Op(1); From %KTK = I, we

have + SN
We have for any j

<1 (V) (30 (3
i= i=1

Furthermore, denote H = NTV INTAFTF and ONT = mm(\/» N T T) for the rest of the
appendix.

2
= Op(1); From Assumption that for all ¢ and j, @ Ztegzj FET L >

Z EF| | =0,0).

te Qij

Lemma 3. Under Assumptions we have for some M1 < oo, and for all N and T,

1 &SN SN ()2 < My, where () = B |19 Sieo,, €inesi]

2. E < M,

2
<m i ZteQz Fteﬂ)

. - 1/2
Proof. 1. Let p(i,j) = (i, 7)/ [E [ﬁm Ztegﬁ 6124 E [ﬁm Ztegij e?t”

1/2
= ’7(17])/ |:7|Q”|(Z’Z)7|Q”|(]a])] ! ’ where W\Q”\(Z?Z) =E [@ ZtEQij e’?t} . Then |p(17])| <1
and p(i,7)? < |p(i,5)|. From Assumption 2, we have [3)g,,((¢, )] < M and [7)g,,(J, )] <
M. We then have for all 7 and 7,
’Y(iaj)Q = W‘Q”‘(l,Z)7|QZ]|(j7j)p(’L,j)2 < M’7|QU|(Z7Z)7|Qu|(]a])’1/2‘/)(%]” = Mh/(za])‘ and

1 N N M N N
N 2o D = 5 30D Miey (e G I leG, )
i=1 j=1

i=1 j=1

M N N
S bl < M

i=1 j=1

IN

where the last inequality follows from Assumption [2|[3]2.

2 2
Z Ftejt < XQM

NY Fieir | | <EINIP-E <
VTR 5 NET 5%

by Assumption [2| and the independence of A with F' and e.

E

]
Lemma 4. Under Assumptions I—l let 837 = min(N, T), we have
1 L~ 2
e | v 20 [N = H| | = 0,0), (25)
j=1

where Hy = <=V~ Z /\i)\;-rFTdiag(VVi O W;)F/qi;.
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~ 2 ~ 2
Proof of Lemma[j. From Cauchy-Schwartz inequality, we have H)\j — Hj\; H <4 HV‘l H (a;+bj+
¢j + dj), where

1 || S&~
aj = 3 Zx\ﬁ@]
1 1N1~ ’
b = 33 ;AZQJ
N 2

From ﬁ

by Lemma [3]1.
Similar as the proof of Theorem 1 in Bai and Ngj (2002),

L 1 i | NN 2\ /2
szj§<NZ) i ) T2 2 | 2 G !
= i— i=11=1 \j=
2
E [Z;V:I CijClj] S N2 maxm- E|<@]|4 and
4
1 M 1
E|¢q|* eirejr — Eleje < =0 <>
Gl = 1g, " |Qu|1/2 ZQJ weie —Bleweil)) =197 =0\
by Assumpt10n“5 Thus, NZN bj =0, (%)
Note that
AN T FRA :
G = N2 > i N2 fE AN D Frejn/y
i=1 =1 teQyj
2
< I [ S ) | =00 (2)
< j =Up
N = 1941 \/@ i3, T

by Lemma EZ Then % ZN:1 c; = Op ( ) Similarly, we can show + ~ ZN d;j = O, (%) Then

*ZHA —H)\H <4HV H aj+b +ej+dj) = Op<;>+op(;f>,
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Lemma 5. Under Assumptions H;—H=0,1/énT)
Proof. Note that

T
1
Hj—H= NN EF — =Y EF'
Z |Q” tezQ: o T ; o
ij =
1 1 _
From Assumptlon \Q 7 ZteQ” FF, —+ Zt |\ FET =%p+0, (\/@) — (EF + O, (ﬁ)) =
O, <%) =0, (ﬁ from Assumption! Assumption and limp_,o |Qs5]/T > 0. V= 0,(1)

follows from Lemma [7 and V1 = Op(1) follows from Assumptions |1 and N = Op(1) by
construction and A\; = Op(1) from Assumption Thus,

H; — H = 0,(1/0nT)

O
Proof of Theorem [1.
1 = 1 &
w 2% - < 5 I - +NZ” (H; = A1
The first term Z H — Hj)\j H = O, (1/6%) from Lemma The second term
+ SN NH; — H)N P = Oy (1/6% 1) following H; — H = Oy, (1/6n7) from Lemmaand Assump-
tion Thus,
- H)\ — H) H < )
V3 e
O

Lemma 6. Assume Assumptions hold, we have

1. & S A, 5) = Oy () where 1(,5) = B 10 Yieq,, €nesi]

N
;IZS\/Z"Y(L].) = &Z(A — HX;) ZHM (i, 5)
Since

i’Y(iv .7)

N N
<EY Al =Y ElNlG )] = 0(1)
i=1 =1
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by Assumptions [2[ and 2, we have + Zf\il HX\iv(i,7) = Op(1). Furthermore,

. , 1/2 . N 1/2
(g mt) ()

(i) 5= i)

followed from Zstl (s, t)2 < M Estl |vnv (s,t)| by the argument in the proof of Lemma
Assumptions [I] and [3] 2.

1 N

N > (N — Hx)A (i, j)

=1

IN

1 o 1 -~ 1
v Z AiGij = 37 Z(/\z' — HX\;)Gij + N > HAG,

=1

s
Il
—
-
I
—

Note that

2

N
1 ) 1 1 1
N2 S N g, ﬁ (enes = Bleaexl)| =0 (7)

from Assumption [2|3]5. Thus,
1 N

“\N
1=

1
Zz 1 HAiGij = \/> Zz 1 \/IT \/@ ZteQ” i (eireje — Bleieji]) = Op <\/W>
following H = O,(1), Assumption [22 (||Ai]| = Op(1)), and Assumption [3}1.

) 1/2 ) 1N 1/2 .
H)\; — =) & =0 ( )
) w(rne) —olm

~ Z — HX\)Gij

Furthermore,

N N
1 ~ 1 ~
N Z Ainlij = N Z()\i — HiX\i)nij + Z HA\inij
i—1 i=1
Note that

1 Y 1 1 1
= H)miy=—Y HMN Fie; —
¥ i = S g 3 Fe= 0 )

t€Qij
following Assumptions 22| and Furthermore,

H% SN — Hidi)mij

< <]{f Zf\il ¢ 2) N Tlﬁ (Ziil n?j)l/Q =0Op (\/TENT)

followed from Lemma [32.
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|~
= =
S
|

N N
1 N ,
Z i )\TFszag(W O Wjei/qij = NT Z Niej diag(W; © W) EFX;/qi;
i=1

Il
3 -
Mz I

N
. 1 .
(A — HN)e, diag(W; © W) FA;/qij + ~T > Hxe/ diag(W; © W;)FA;/qi;.
=1

-
Il
—

Note that

H — H;\)e] diag(W; © W, DVEN; /i

N , 1/2 LN 1/2
il Fe; s
: (maX V ’Q’LJ ) ( g H ) (N; V |Qz] tg o ) H jH

- ()0 -0 ()

followed from Theorem [I, Assumption [2}2, and Assumption [2/4. Furthermore,

< ||H] (max

N
1 .
7 § HMe, diag(W; © W) F;/q
=1

Jm%)JEQ@Mgkﬂ%“” ()

following H = O,(1), Assumption 2 and Assumption 2.

Lemma 7. Assume Assumptions[1] and[3 hold. As T, N — oo,
~ = = O\ % _ o P
1L AN (Fr(XX )0 QV) A=V S,

2. = AT (AFT) o W) (FA) owT) o)) F=v 5 v

9. AT (AFTFATY A=V B v
where V' = diag(vi,va, -+ ,v,) are the eigenvalues of XAXp.

Proof of Lemma([7 The proof is similar to the proof of (R12) on page 1175 in [Stock and Watson
(2002a). Let v denote N x1 vector andlet I' = {y|y"v/N =1}, R(v) = NT27 (()N()?T) 0 Q(—l)) v

R(y) = 27" ((AFT) o W) (FAT) oW ') @ Q1) v and R*(7) = 4=y AFTFATy. We fol-
low similar steps as [Stock and Watson| (2002a) and can sequentially show

(R2) sup,er ﬁ'yT (((W oe)e ® WT)) ® Q(*l)) ~ 20
(R5) supyer wim T (W o e)(FAT) o WT)) 0 QD)4 o

~ P N P
(R6) sup,er [R(7) — R(y)| — 0 and sup,cp [R(v) — R*(v)[ = 0
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Proof. We have the decomposition

R(y) — R*(v) = R(y) — R(y) + R(v) — R*(~)

For R(v) — R(7), we have

el (((W ©e)em OWT)) o 1/ﬁ) v+ 27 (Woee)(FAT) o W) Q)5

sup |[R(y) — R(y)| < Sup

el NT2 AT (oo omT)) o)

Fsup —oo |y T (((W ©e)(FAT)® WT)) © Q<—1>) | = 0.

’YEF NT2

For R(v) — R*(7), we have for any v € T

~ 1 N N 1 T
R(y) = R*(y) = WZZ%’%’&T Z EF' _TZFtFtT A
=1

i=1 j=1 tEQ”

. N N 1/2 . N N ) 1/2
< (w33) (mzzww)

where Z;; = |Q”| Zteglj EFT — 23, I RFE" and 4Ty/N =1 for any y € T. Since E;; =
2

( ) for all (i,7) and || A;|| = Op(1) for all i, \]Z;;A; = 0,(1). Then (A Z;;);)” = 0,(1) and
- 2
N2 Zz 1 Zg 1 ()‘T‘—'UA ) = Op(l). Thus,
- i} P
sup [R(y) — R*(v)] — 0
~yel
and .
sup |R(y) — R*(v)| = 0.
vyel
O

> P . P
(R7) |sup,er R(v) — sup,ep R(7)| — 0 and |sup,cp R(y) — sup,epr R*(y)| — 0

(R8) sup,er R*(7) T vy, where v is the largest eigenvalue of X p¥,

(R9) sup,er R(7) = v1
(R10) Let A; = arg sup, e R(7); then R(A) L, vy and R*(Ay) Lo

(R11) Let El denote the first column of A and let S = sign(Kl,A ), meaning S1 = 1 if ElTAl >0
and S} = —1if Al A, <0. Then SlAl LATA/N)=1/2 —>l , where I; = (1,0,---,0)".
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(R12) Suppose that the N xr matrix A is formed as the r ordered eigenvectors of (XOW)(X T oW T)
normalized as ATA/N = I,.. Let S denote S = diag(sign(ATA)). Then S’ZN\TA(ATA/N)*U2 il
1.

(R13) For j =1,2,---,r, R(/NX]-) R vj, E(/NX]) R vj and R*(ZN\j) R V.

Proof. The result for R(A;) T v1, R(Ay) L, vy and R* (Ay) Ly vy is given in (R9) and (R10).
The results for the other columns mimic the steps in (R8)-(R10), for the other principal
components, that is, by maximizing R(-) and R*(-) sequentially using orthonormal subspaces
of I. O

Note that Lemma[7l1 has
AT ((XXT DYA = di Aq). - A ]
oA (RXT) @ QUY) & = diag(R(Ry), -, B(R,)) — diag(vr, -+ v,)
from (R13); Lemma [7]2 has

NT2AT (((W © (AFT)> <(FAT) © WT)) © Q(_l)) A= diag(é(]&l), e ,E(KT)) — diag(vy, -+ vy)

from (R13); Lemma|[7]3 has

* /A * (A P .
NT2 AT <AFTFAT> A = diag(R* (A1), -+, R*(Ay)) — diag(vy, - - vy)

from (R13). O
Lemma 8. Under Assumptions[1] and[3,

1. %TXTA il Q, where Q) is invertible, Q) = V1/2T2;1/2, diagonal entries of V- = diag(vi,va, -+ ,vy)

are the eigenvalues of ZIIV/QEAE}TN

TIT =1.

, and Y is the corresponding eigenvector matrix such that

2. H' & QT , where H = ﬁf/_IKTAFTF.
Proof. 1. The proof is similar to the proof of Proposition 1 in Bai (2003). Multiple SA = AV
1/2
by % (F;F) A, then we have

T2 T\ /2 ATK _
1<F F) ATEA:<F F) ATAS

N T T N
and then o B Ly
FTr\" ATA FTF AR (FTRYPATRS
T N TTMEUT N
1/2
where dNT L (F;F ATdNTA and dNT has
~ 1
dvrgg = AN < FTdmgWQW)F—TFTF>)\ +\Q | e diag(W; ©@ W;)F\;
ij
1
N F T diag(W; © W;)ej + el diag(W; @ Wj)e;
HES !Qw!
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From Assumption @FTdiag(Wi OW;)F —LFTF =0, (ﬁ) and then

1 ~ 1
—AT — -
N dNT Op ((5NT>

following Lemma@ The remaining steps to show %KTA Lif Q are exactly the same as that
in Proposition 1 in Bai (2003).

2. Note that

1~ ~ ~
H= ﬁV*lATAFTF LvQye =V WIS ey = Vst = (@)

Proof of Theorem[J. By Lemma [6, we have

=0 (i ) <0 (e ) 700 (05) 0 (i)

When T /N — 0, the limiting distribution is determined by the third term. Thus,

VI - Hjj) = Z ’Q )‘)‘T\/@ZFteyt—i-op 1)
4 is] t€Q;;

1 T
= v ~H AiA F
Z 1041 i ,—| 3, tz tejt + op(1

€9Q;
following H; — H = O, (ﬁ) From Assumption ,
N

1 d
= )\ A § Freji = N(0, ;).

€Qij

From Lemma |8 H — (Q~!)T and from Lemma |7, V1 L, V. From Slutsky’s theorem,
N

1
vl _m /\)\T
N Z Qi \/\Qm .

=1

d IR le—
> Feip S NO,VHQT)T2,Q7' V.
€Q;;
A consistent estimate for the asymptotic variance V_l(Q_l)TquQ_lV_l is shown in Lemma @
Furthermore,

\/T(Xj — H/\j) = \/T(XJ — Hj)\j) + \/T(H] — H))\j + Op(l).

From Lemma H; — H = 0, (ﬁ) Then VT(H; — H)A\j = O,(1) from Assumption and

VT(H; — H)), contributes to the asymptotic distribution of ;.
From the definition of H = ¢V 'ATAFTF and H; = LV 3N, N a1 Liea,, L we
can write H; — H as H; — H = ﬁf/_l Zfil Zle yit,j)\i)\iTFtFtT, where y;; ; = T‘ |QTJ| for t € Qj,

Yir,j = —1 for t & Q;; and Zz’]\il ZtT:1 Yit.j = 0.

98



Note that

N T
Nizzyltj)‘)‘ FtFt = %ZZ?J#]H)\/\ FtFt +722ym —H\ ))\TFtFt
i=1T= =1 t=1 =1 t=1

I II
For the second term II, we have

o\ 1/2

1 N1 &
1= =

= 0,000, (m) < 7)- O(é%vlT)

following Theorem (1} and %Zle ?/z’t,thFtT =0, < \/|197|) =0, (T) Thus, the second term is
ij

smaller than the first term.
From Assumption [3|[5]

1 N Z d
—= > g AiA BF, 5 N(0,Egy).
T — —
=1 t=1
From Slutsky’s theorem,

T T d T —_
Zzyit,j/\iAi FiFy Ay — N(0,(\; @ )Ep;(A 1)) .
Nf i=1 t=1 ( ! )

and

N T
1 ~_ d _ P
—V'H i NN BETN S N (0, V! A @DEp;(\eDQVT).
NVT ;tzlym i L'ty Aj ( Q™ ) ( )EE;( )Q >

Lemma |10/ shows a consistent estimator for the asymptotic variance V_l()\jT @ ;N\ @ VL

Furthermore, T (XJ — H;\;) and VT(H; — H))\; are asymptotic independent because the
randomness of \/T(Xj — Hj)\;) comes from Fyej; while the randomness of /T'(H; — H)); comes
from yit,inAthFJ. Then we have

VTN — HX\) S N,V QYT &,Q 'V 1 + VHQ YT @ DER; (N @ DQTIVTY

Iy
Aj1 L2

The plug-in estimators of |SYRT and L'z 2 denoted as f,\jJ and f‘Aj,g, are provided in Lemmas@
and (10| respectively. Let I'y; = I'y; 1 + 'y, 2 From Slusky’s Theorem,

VIT V2 = H)j) % N(O, 1)
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= E[eje?] and we know

Lemma 9. Assume there are finitely many nonzeros in each row of ¥
Under the assumptions of Theorem@ we have

of nonzero indices in X, .

the set er
Ty.1 = AVar(VT(A; — Hj\j)) + op(1),
where
1 o e
P B0 ) PRO YN [ - R &2 | M V!
At = le el 2 v
i SGQijytEQlj’(svt)Ger

and € = X — XIE for the observed X;.
Proof it = X — )\ F; is a consistent estimator for e;; for (i,t) € {(i,t) : Wiy = 1} because F; and

\i are consistent estimators for (HT")~'F, and H); following Theorems I and I Recall

T(\; — H;)\j) H\N ——— F
\F( Z ‘Qz /7|ng t;g: teyt-i-Op 1).

Note that X;; is observed for ¢ € Q;; so €;; is a consistent estimator for e;; for t € Q;;. Then for
each ¢ and [, a consistent estimator for the asymptotic covariance between ﬁ >ie 0, (HT)~! Fiejy

T)ilFtejt is

1 ~ =T~ ~
[Qi11Q451 ) FyF, €5
g J 5€Qi;5,t€Q1;,(5,) €S

1
4 gt oy

Together with A; to be the consistent estimator for H;\; and H\;, a consistent estimator for the

asymptotic variance of vV N (Xl — H;\) is
1 P
Z FsFtTejsejt )\Z)\ITV 1

:[)\ 1 ZZ A )\ 7Q]Ql7 te(! s,t GSZE
D

=1

Lemma 10. Under the Assumptions in Theorem @ and FyF," and M\ are ergodic in mean, we

N T
1 ~
Tyo=AVar | —=—V~! yie ;JHNN FF N | 4 0p(1),

L with

have

where f)\jg = ﬁf/‘l [g1 + ZQ + 113 + ;14 |4
A (Z% i y?ty) (NT Sty Yt MAT FET A R ET AT)
if \; is independent

IIL+p)\7”+p) otherwise

AmAp FE] NN FET X
if Fy is independent

'm=max(1,1—p), where p=I—i m

{(ZT 12?[121#7 ylf]Ult;) ( ST OERET, )\ RE
mm(NN p)

Ay =
Zt 1 Zz 1 Zz# Yit,jYit.j (T(’V oD Zs 12
i (Z?:l Zs;ét sz\il Yit,jYis.j (% Z% 1)‘ /\T (l T*l F“FT) Aj /\T ( Zg L FuFy > Anz/\;) )
3= T N min(T,T—7 DY .
Et 1 ZS?“ Zi:l Yit,jYis,j m Zm:l zu_n(lax(l 127), where r=s— t/\ /\TF F )\ /\ Fu+7'Fu+-r)‘ /\IL> , otherwise
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(ZZ;I Dot Zf\zl D1 Yit s, ( Z, 1 EFT )X XT ( Zf 1 F,F, ) if Fy, \i are independent

T N \(T,T— TYITE & e
i Dotm1 Dt Dima X YitiYisg \ 7= |T\ Zu max(1, 1)7—) where T=s— fF F[ Aj /\ Bt Fu+7) if A is independent
4= T N (NN Y T =T\ % N
Ztl,:l Zs;ﬁt it Zl#i Yit,jYis,j | N= |p‘ Zm max(1, l)p) where p=j—i A (& Z 1F FT> Aj )\T ( Z 1 Fa FT) Am +,,)\T+/> if Fy is independent

T N o min(N,N—p) min(T,T—7) T )
Zt:l Zs#t Zi:l Zl#i Yit,jYis.5 \ (N=Tp]) (T [N Zm =max(1,1—p), where p=j—i Zu:max(l,l—f), where T=s—t )\ )\ F F /\ by FM+TEL+T/\W+P)‘7W+P) otherwise

Proof. We have

1 1
Cov vt a HNN B E N ——V 1 a HNN FFN
(a7 T R PSS

i=1 t=1 i=1 t=1

1 ~ ~
= sV At Ao+ A+ A= A5V

N T
A= S S QRE [HA NE [FtFT)\ )\TFtFtT} AN HT]
i=1 t=1

N T
A = 55 sy E [H)\MZT E [FtFtTAjAJTFtFJ} AZAZTHT]
i=1 i t=1

N T

A = DSOS winuis B [HANE [BE A EET | 3T H|
=1 t=1 s#t
N T

A = SOSSS wiuesE [HNATE [BETAA BT | WA HT |
i=1 1£i t=1 s£t

A = <ZN:ZT:%JE [N | E [FET) A ) <ZZ%M (AN | B[R] )\j)T

i=1 t=1 =1 t=1

First note that E is a consistent estimator for (H T)_lFt and X, is a consistent estimator for
H\;. If we plug in Fs for Fs and A; for A;, all the rotation matrices canceled out in A; to As.

Since FF, is ergodic in mean and \;)\] is ergodic in mean, we have %ZSTZI HF,F] —
E [HFSFST] = op(1), % sz\il Ai)‘iT_E [)‘Mﬂ = op(1), % Ethl FtFtT)‘j)‘jTFtFtT_E[FtFtTAj)‘jTFtFtT] =
op(1), wr SN ST HAN BFT A FFEIANHT —E /\i)\iTFtFtT)\j)\]TFtFtT)\,-AiTHT] = 0,(1).

When F; is independent, E[FtFtT)\j)\;rFstT])\j] = E[FtFtT])\j)\;]E[FSFJ]. When J; is indepen-
dent, IE[H)\i)\iTIE[FtFtT)\j)\]TFSFST])\ZAFHT] = IE[H)\,-AI]E[FtFtTAjA;FSFJ]E[Al)\ZTHT]. When F;
is independent and )\; is independent,
E[HNX EIFF A FoF NN HT] = EIHNA B[R FT I E[FFENA HT.

When F; is independent,
LN HAN (% ST FtFtT> MAT ( ST RF, ) AN HT—E[HAN E[FF IV E[FRET NN HT] =
op(1).

When A; is dependent,

min(N,N—p) Y
(N ) ZS 1Zm max( 11p p), where p=Il— 'L>\m)\

_E [H/\ A E [FtFJA N EF] } NAHT| = 0p(1).



When F} is dependent, gy Son_y St ) M FuE T NN By EL A\ —

u=max(1,1—7), where T=s—t
E [H)\i)\iTE [FtFtTAjAJTFSFJ ] )\Z-)\ZTHT} = 0,(1).

.. . (T,T
When J; is independent and F; is dependent, 7— M ZT?MX(I lT ) 1), where r=s—t

—E [HANE |[BE A FET | MAHT] = 0,(1).

When A; is dependent and F; is independent,

min(N,N—p) XT(LST 7 eT\SAST (AT T Y T

N— |p| Zm max(1 lp p), where p=j—i )\ )\ (T Zu:l FUFU ) )\])\j (T Zu:l FuFu ) )‘m+p>‘m+p
_E [H/\i)\;.rE [FtFJAjAJTFSFST } )\l/\lTHT] = 0,(1).

When ); is dependent and F; is dependent,

1 Zmin(N,N—p) Zmin(T,T—T)

(N—|p)(T—]|7|) 4~4m=max(1,1—p), where p=j—i £Z~u=max(1,1—7), where T=s—t
E [H)\i)\ZTE [FtFtT)\j)\]TFSFST ] )\l)\lTHT} = 0,(1)

This completes the proof for Lemma [10| for all scenarios.

BT 8 AT Poer B

A AF L ET); )\ Furr B A oA o

Lemma 11. Under Assumptions we have
1. % Sico, sy (M — Hid) eir = Op(1/8%7)
2. § Yico, POVL=IS) (X,- - H/\z‘> eir = Op(1/0%7)
8 N T (Xi - H/\i> A = op(1/0nT)

4o %K (V= HX) N = 0p(1/0nr)

Proof. 1. The proof is very similar as Lemma B.1 in Bai (2003)).

N Z P(Wy = 1\5 (AZ’ N HA) cit
sz t—1|S Z)\l’}/llezt—FNQZ —1|S Z)\lgzezt
= N2 Z Wi = 1|S ZAlnlzezt‘i‘ N2 Z — 1|S ZAlfl’Lezt

= V- [I+II+HI+IV]

:V_

Since p < P(Wjy = 1|S) by Assumption 3 (then qus) < %), I = 0,(1/6%7), II =

O,(1/8%:7), 11 = O,(1/6%7) and IV = O,(1/6%1) can be shown similar as Bai (2003) given
Lemma [3] and under Assumptions

NZP Zt—l\S (X HAZ')G“ - % A P(Witl—l\S) (Xi_HMi>e“
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The first term is o,(1/dnT) by Lemmal. By Assumption the second term is O, (1/6%7).
Thus, & Yseo, sy (M — HA) eir = 0p(1/6%).

1 on /- Lo~ (% S
NZ(Ai_H)‘i)A;:NZ<>‘i_Hi>‘i>)\iT+NZ(Hi_H)>\iAiT
=1 =1 =1

N EZ 1 ( — H; )\ ) A = 0,(1/831) can be shown similar as [Bai| (2003) Lemma B.2 and
under Assumptions [I{3]

N N N T
- 1 ~ 1 1
NZ Hi—H)xA = VSIS o > FSFST—TZFSFST Aiki
i=1 i=1 =1 il seg s=1
_ 1 N N _ 1 1 T
— V’IWZZ(AZ HX)N o > RES TZFSFST A
=1 [=1 b SEQy; s=1
N N 1 1 T
+V—1ﬁzzﬂmf an > ERES fZFSFST i,
i=1 =1 " seQy s=1

where the second term is 0,(1/v/T) by Assumption (7| The first term is O,(1/6%,) by [1| and
Assumption 3|7}

4. From Lemma [[1l3 and Theorem [i]

Proof of Theorem[3. Decomposing

N

= _ 1 1 ~ 1 1 -
F=— X Wiy = — — X\
t N Z P(‘/I/’Lt — ]_‘S) whrat e N Z P(Wlt — 1|S) 1t N\
=1 i€y
we have
Fo= 5 2ico, Wﬂ\s)ojﬂ +ei) A
(% 2ico, mA i ) ¥ Lico, m)\ €it

_ 1 1 N
= (W 2ico, 4P(Wit:1|s))‘ Ai ) N Zzeot P(Wn 175) HAieit + Zzeot 4P(Wlt 115) ()‘i - H>‘i> €it

where the last term is 0,(1/dnT) by Lemmal. From Assumption + > ico, W/\ eir
N(0,T;). From Slutsky’s theorem and Lemma

R0 o N S 7 W TP -1
N g; P(Wfit _ 1|S) H/\%ezt — N(07 (Q ) PtQ )
1€0:

A consistent estlmate for the asymptotlc variance (Q~ 1) TTyQ! is shown in Lemma
Denote Gt N Zze(ﬂt m)\ )\ . We have

I = 1~ 1~
Ft - (Hil)TFt = (Ft — GtFt> + (Gt _ NATA> Ft + (NATA . (HI)T> Ft
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Note that ATA/N = I,, we have

iNT . flT_i’vT T_N —1\T __ L
SATA— ()T = SR (AH A) (H D =0 (5
from Lemma [I113.
Note that
1 1 1 N
— —ATA=— —_\; )\T i /\T i Xi)\T
Gimy NZP(VVit:”S E: Evt i

1€0

where v;; = m —1for i € Oy and v;y = —1 for i € O;. Note that

1L - 1 & 1 & -
5wl = D v HAN + Y i ()\i - H)\i) A
=1 1=1 =1

I II

1 - NP X
(35 pmp) (33

1
= () () =2 (&)

from Cauchy-Schwarz inequality, Theorem [2, Assumption [I[}4 and Assumption [3]2.
Thus, the first term I is the leading term in % Ei\il vi’txi)\;-r. From Assumption ﬁ Zfil v”)\i)\: i>
N(0,04+). From Slutsky’s theorem,

For the second term II, we have

BN No— HXN) A

IA

1/2
2)

N
1
Vo ST v dN B S N0, (F @ 1)Ors(F @ 1))

and N
1 d _ _

——HY v\ FE S N0,Q N (F @No(FehQ™)

VN i=1
A consistent estimator for the asymptotic variance of (Q~1)7T@ A+Q 7! is shown in Lemma

\/N(~Ft — GyFy) and VN(Gy — (HT)~1)F; are asymptotic independent because the randomness

of VN (Fy — G F}) comes from the time series average of H;\;e;+ while the randomness of \/T(Gt —
(HT)™Y)F; comes from vm)\l-)\;r. Then, we have

VN(F, = (H)TF) S NO,(Q )T +(Q ) (F @Nen(F e NQ™).

Vv
OF 1 OFy,2

The plug-in estimators of O, 1 and © F25 denoted as © 7,1 and 6 F,,2, are provided in Lemmas

and (13| respectively. Let 5 F, = 6 A1+ 5 F2-
From Slusky’s Theorem,

VNOL A~ (HT)'R) % N(0, 1)
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Lemma 12. Assume there are finitely many nonzeros in each row of Xe, = Elerel ] and we know
the set Qe, of nonzero indices in X.,. Under the assumptions in Theorem [3 we have

Or,1 = AVar(VN(F; — GiF,)) + 0p(1),

where

~ 1 1 o~
Of1=~+ > ~ X[ €t
N €0, (1,)EQe, PWir = 1‘A) (Wi = 1A, Fi1)

€ir = )N(it — X:ﬁ’t for observed X and IB(WM = 1|S) is a consistent estimate for P(Wy = 1|5).

Proof. If X;; is observed, €;; is a consistent estimator for e;; following the same reasoning as Lemma
[ Recall

VN(F, - GF,) = \F Z Wi = 1/5) HiXiei + op(1).

Xi is a consistent estimator for H;)\;, then a consistent estimator for the asymptotic variance of
\ﬁ >ico, P(Wi= 1|5)H)‘ eit 18

1 1 ~~
- = = NN Eierr,
N ie@t,lEOzt,:(i,l)eQet P(Wie = 1A, Fro1) P(Wi = 1A, 1)

where P(Wj, = 1|5) is a consistent estimate for P(Wj, = 1|5). O

Lemma 13. Under the same assumptions in Theorem@ if FF," and )\i)\iT are ergodic in mean,
we have

(:th,2 = AVar (\ﬁ ;vth)\ i Ft) +0p(1),

where épt,g = N <31 + BQ) with By = (Zf\il vzt> (% Zz]\il XJ;EEJXAI) and

B 25\41 Zl;&i Vi ULt ﬁtﬁtT7 if \; is independent
2= N min(N,N—p) .
D i1 Dt VitV (N 7] - max(1,1-p), where pei—i XA L F, )\m+p/\m+p) otherwise

Proof. We have

N N
1 1 1
v (\/N E 'UiiH)\i)\;rFt, ﬁ E Uz‘7tH)\iA;rFt‘Ft> = N (Bl + BQ) s
i=1 =1
where

N
By = Y vLEHNN FF AN HT IR
=1
N
By = > > wiwiB[HNN FF AN H'|F)
i=1 I#i

For term B1, we can consistently estimate IE[H)\i)\iTFtFtT)\i)\Z-THT |F}] by % Zfil XJIEF}TX@XI
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For term Bs, we separate the case that )\; is independent from the case that \; is dependent.

When A; is independent, E[HA; N EF NN HTE] = EHNN FRFTENA HT). Since M\
is ergodic in mean, we have FyF,| — E[H; N EFT N HTF] = op(l)
min(N,N—p)
If \; is dependent, we have 5— ‘p| Em max(lf ), where p=I— Z/\ A FtF )\m+p/\m+p

—E[HNN FET NN HTIF) = 0,(1).

Proof of Theorem [ From Cy = XZTE and Cy = A, F;, we have
Cit — Cyp = N H'(F — (H) 7 FR) + (N — HN) T F, + 0,(1/dn7)

The second term can be written as

Ni—HXN)F, = i—HXN) (HD) 'E+ O —HXN) (Fr— (H)7'E)

= Ni—HN) (H")'F, 4+ 0,(1/6nT)
Thus, B B _
Cit — Cou =N H(F, — (H)YF) 4+ O\ — HX) T (HT)YE, + 0,(1/0nT).

-1
Following Theorem 3 in Bai (2003), we can show that H ' H = <ATTA) +0, (%) Then,
NT

N
~ _ (5NT 1
SntA HT(F,—(HD)YYE) = Z=\H'H — _Ne; AN F, 1
NTA H (Fy— (H )7 Fy) ZP(WitZHS) etJF;lU,t i | +op(1)

€Oy

Syt v (ATAN 1 al -
= T)\Z <N> Z m)\ieit + ;’l}i,tAi}‘i Ft + Op(l)

€0

and

_ ¢ TF\ " (ATA - 1 N 1 1 N T
- %FtT ( T ) (T) VVTIH (N > i1 Ai)‘?m Etegzj Frejt + N D i1 Q=1 ?Jz't,in)‘z‘TFtFtT> +0p(1)

-1 -1
) FTF ATA 1 N 1 1 N T
= %R ( T ) ( N ) (N St AN o Ztegu Fieji + w7 2im1 i1 yit,j)‘i)\iTFtFtT> + op(1)

—1 ~ ~
following (A A) = H"+0,(1) in Lemma Fi—(H")™'F; and \; — H); are asymptotic indepen-
dent because the former is the average of cross-section random variables and ~ va 1 i, tX )\ with

va 1 Vit = 0 and the latter the average of time-series random variables and Zl 1 ZT 1 Y, ,)\l)\ FF,'
with Zl:l thl yi; = 0 . Then we have

~ 52
Snt(Ci — Cy) % N (o, %)\I ST+ (B @ IO (F @ D)5\

62 e - —ly—
+HEETSRE N + (A @ DER; (A © f>>2A12F1Ft>

From Theorem [2, the plug-in consistent estimator for the asymptotic variance of § NT(Xi —H\) is
2~ ~
JNTTF A;- From Theorem 3| the plug-in consistent estimator for the asymptotic variance of dn(F; —

2 ~ ~ ~
(HT)"'F) is (SI\’TT@Ft. Together with F} to be the consistent estimator for (H ' )™'F; and ); to be the
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consistent estimator for H\;, the consistent estimator for th asymptotic variance of § NT(é’it —Cit)
2 ~_ ~ ~ 2 ~— o~ ~
is XEXTOp N + AL F Ty, Fy. Then we have

1l ~ 1~~~71/2~
<TAiT®Ft)‘i + NFtTFMFt> (Czt — Czt) i) N(O, 1).

Proof of Lemma(ll The average of common components T%TO_ ZtT:TO 41 (@t — Cit) has

T

1 1
C —c) - ANH — F—(H)'F
T — TothZ <” i T Ty, _Z (Fi— (HT)'F)
Oz+]- t—TO,z+1
TrprTy—1 1 d
(i = HX) T (H ) > Fi+op(1/6n7)
T o0 t=Tp,;+1

From Theorem
VN(F, — (H")'F)) = VN(F, — GiF,) + VN(G; — (H') ™) F, + 0,(1)

. T
From Assumption 1, we have W—Tw) Zt:TO,i“Fl > ico, m)\ieit = 0p(1) and then

VN &
Y (B —GiF) = op(1)
. Wit A AT d
From Assumpt10n2, we have T_L]T\(f” ZtT:TOJH (% SN m - % PR /\i)\;r> F, = N(0,04,)

and then
T T N

VN T 1
—— > (Gi—H)HWE, = —————H > > wighi)N Fitop(1)
T=Toi =Ty i+1 VN(T —T,) t=Tpi+1 i=1

d _ _
= NO,(@Q D) enQ™
From the proof of Theorems [2] and

TR d - e
F (P Shn o ) HXi—HM) S N (o WESEERN@; + (] ® DER (O © D)SF SE )

Following the same argument as Theorems the asymptotic variance of /\TH T t to +1(Ft —
(HT)"'F,) is asymptotic independent of the asymptotic variance of (A\;—H\;) T (HT)~ IS tor1 b
Then we have

1 d Tyv—1 -1
> Cii—Cy) S N(0,AS7'0050' N
T—Ty,; To; Toz+1< ¢ t) ( A FATEA

FUESE TR @5+ (] © DER; (N © D); S5 )
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Lemma 14. Under the same assumptions in Theorem [3 we have

Opi = AVar Z sztH)\/\ Fy | +0,(1),

VN(T = To,) t Tpi41 i=1

where éA,i = % (EH + Ezg) with

Ei,l = W ZtT:TO,iH EZ:T07i+1 le\il Vi tVi s (% ZZJL AMIEE:)\Z-/\ZT), and when X\; is inde-
pendent,

By = T=Tp: 2 T0z Z Z sztvstt s

t=Ty,;+1 s=Tp;+1 i=1

otherwise,
min(N,N—p)
54 N NT Ty NT
Bi,? T T Z Z Z Vi, tVi,s — ’ | Z )\m)\mFth >‘m+P)‘m+p
0, l t To,i+1 s=Tp;+1 i=1 P m=max(1,1—p), where p=l—i

Proof. We have

CO’U (W—TQ;) Z?ZTo,thrl El]\;l ’l}i7tH)\Z‘)\;rFt, W—TOJ) ZZ—’:TO,H”l Zi\;l U'L,tH)\ZA;rFAF) = % (Bl + BQ) s

where
1 T T N
B = W Z Z Z Ui,tvi7sE[H)\,-Ag—FtFJ)\Z.)\;—HT|F]
02 t=Ty ;+1s=Tp;+1 i=1
By = (T —Tp,)? To Z Z ZZUZ i EHNN FFS N HT|F)
7

t Toi41 s=To +1 i=1 I£i

For term By, we can consistently estimate E[H\A] FLE] A\ HT|F] by + SN XZXZTﬁtﬁJXZXzT
For term Bj, we separate the case that \; is independent from the case that \; is dependent.

When J\; is independent, E[H)\ N EFI NN HTF) = EHNN JFREJENA HT). Since A\

is ergodic in mean, we have FyF.| — E[H\; N FEI NN HTF) = op( )
(N,N—p)

If \; is dependent, we have 5= ‘p| Zimmax(l I ), where p=I—i AmALFET )\m+p/\m+p
—E[HMN FET NN HTIF) = 0,(1). O
Proof of Lemma[3 We can decompose the estimated loadings Xﬁ’”eat by

-1
Agreat _ Z FtFtT Z FtXftreat
t=Tp,;+1 t=Tp,;+1
T ooy _ T !
— Z Ft FtT Z FtFtT )\IZ?T'eat + Z FtFtT Z F etreat
t=Tp;+1 t=Tp,;+1 t=Tp,;+1 t=Tp,;+1
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Denote the population and estimated factors from Tp; + 1 to T" as Fiy, ,y1).1, Firy . 41)1 €
R(T=T0.0)" From Theorem for any ¢, Fy — (HT)"'F, = Oy (ﬁ) Then we have

T%N(TOZ+1 Fmayr = 7= T0L<F(Tol+1)TH +0p (5NT)) (F(TOZH)TH +0p <5NT)>

= TfTo,i(HT) IF(;’O i+1):T (Toz+1)TH +0p <5NT)

From Assumption T To FF(T0 +1): 7 FE (1, ,+1).7 18 invertible, thus,

1 =T o -t T T 1
(T—To,iF(To,i+1):TF(To,i+1):T> =H (T To, 1FT0 1) TF(TO,rH)ZT) H +0, (m)
and for any ¢ and s

~ ~ ~ -1~
T 1 T
I <T—To,iF(TO,Z-+1):TF(To,i+1):T) Fs

= (R 50, (51)) (7 (Pl s Fmon) 57405 (517) ) (4771404 (335)

= F' (T = F . 41) TF(T0,1-+1):T) Fy+ 0, <5NT> (26)

We regress X; 1y ,+1.7 on f(TO ~+1):7 to get Xf’"e“t, that is

)\great = (F(—jr“o,i+1):TF(To,¢+1):T> F&o,i+1):TXi:TO,i+1:T

~ ~ -1 -
T T
- (F(To,i+1):TF(TO,i+1)3T> F(To,ﬂrl):TF(To,i-i-l):T)\?eat

~ ~ -1 -
T T
+ (F(To,i+1):TF(To,i+1):T) F(To,i—l—l):Tei,TO,i‘f‘liT’

where the second term is the estimation error. Then for C#7¢% = F,T\l"ea! e have

~ ~ ~ ~ -1 -
Cftreat — FtT (F(—jr—b’i+1):TF(T0,7;+1):T> F(—Yr’oyﬂrl):TF(To,iJrl)ZT)‘great
~ ~ ~ -1 -
T(ET T
+F (F(To,i+1):TF(To,i+1):T) E(1y i4+1)m€i To i+ 1:T

From Equation , for the first term in 63" cat we have

T 1 1 T treat
By (T—T0 p (To 1T To it1): T) T—To, F(To,i+1):TF(TO,i+1):T)\i

FT 1 T 1
- Ft (T To.; (To i+1):TF(TO,i+1):T) T—TOiF(To,H—l):TF(TO,i‘f‘l):T)\?eat + OP (W)

= FAreat 4O, <6NT> = Clreat 4 0, (5NT)

and the leading term in the error is (Fy — (H)~ F,)T HAeat | For the second term in C1¢ot we
have

n 1T B 1T
F(TO,i+1)3T (T*To,i F(To i+1):T (TO i+1): T) T—-To,; F(To,i+1):TeT0,i+1iT

—1
1 T 1 T 1
F(TO,i+1)3T (T—TO,Z' F(To,i+l):TF(T0,i+1):T) T_TO,i F(T01i+1):TeT0,i+1:T + Op (JNT)
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following the estimation error for F, is O, <ﬁ), IT F(—:rp0 1) TCTo 1T = O, (1) and

v T=To,;

T
~ T
<F(To,¢+1):T — F(TUYiJrl):TH*l) €T +1:T = Op (%) following the same argument as Lemma
Thus, we have

Ctreat Ctreat _ (ﬁt N (HT)let)TH)\great
—1
T 1 T T 1 T 1
+F (T—TOJ Zt:TMH FiFy ) T-To, Zt:TMH Fiey + Op <5NT)

Since the estimation of (F,—(H " )~1F;)T comes from the control observations and T%TOZ Z?:To,ﬁ-l Fiey

is determined by treated observations, they are %Iimptotically independent. Togethér with

T%To,i ZtT:TO,iH FF' EiN Y from Assumption |2lf1| and Wi Zt To.i+1 Fie;y 4, N(0,%;) from

Assumption [4], we have

VT =To(Cleet = Clyety & N (0, T2 (Areat) TSRy + (BT @ DOp(Fy @ )Ty Areet

+F SE SR

Lemma 15. Suppose Assumptions hold, T — Ty ; — oo, t1 — to is finite, and let 512V,T7T0,~ =
min(N, T — Toﬂ'),

5NT((ZTZ)—lzTMctrlZ(ZTZ)—l + Mgtrl)—1/2 (Elgztrl _ Bictrl) i> N (07 I) (27)
5N,T7Tg,¢ ((ZTZ)fl ZTMtreatZ(ZTZ)fl + Méreat)fl/2 (E%treat _ ﬁfreat) i} N (O, I) (28)

where (ZT M Z)=1/2 (ZT MPreat 2)=1/2 ) is the square root of ZT M Z (ZT M7 ) and M
(Mt ) is a (T — Ty ;) x (T — To,;) matriz with

Mtct%“t T, = AVar(Syr- TOZ(Ccm Cctrl))
= 512%%} SEIH@ + (AT @ DER (AT @ 1)S IS E,
Mtctrjl_b“s . = Cou(dnr_ TOZ(cCtT‘l Cetrly Sy TOZ(Cctrl cetrty)
= (SJQVTTFtTE;lE;l(cI)Z- + (AT @ DER (N @ )2 SR
M%Tln _ 512VTNT0 ( /\;;trl)TEXIGA%Z’ZmE/—\l )\thrl

and
512VT T
treat Streat treat T =Toi 2T -1 -1
Mtr%z,t Toi AVar(énr-1, ,(Ciy™ — Ci*)) = ﬁFt Y UiEn R
— 1o
5?\@ T
ML gy, = Covlbng, (CHE = CHtt) S, (Gt — Cfreet)) = T BT sl U,
’ — 1oy
52
treat NT-To,i ;ytreat\Ts—1 —11treat
Mzrleffz = T()\fea) b))\ @A,i,Z,lmEA Ai e
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Proof of Lemma[1. Since

ctrl Bct’l“l ( Z) 1ZT(C’Ct(TO A1) T CCt(Zlb i+1):T )

and
’Bjreat pireat — (ZTZ) 1ZT(Ctr(§%tl+1) T Ctré%tﬁl) 7);

the proof is a direct extension of Theorem |4} I and Lemma The term (Z' Z)~'ZT M Zz(ZT Z)~1

comes from (A" — HX)T(HT)~1F,. The term M (and M%) comes from (Fy—(H )~ F;) T HA¢!
(and (F; — (HT)~1F;)T HAlreat) | which follows Assumptions [5| that the variance correction term
dominates. The term (Z72)~1ZT M Z(Z7Z)~! comes from

-1
T 1 T T 1 T )
Ft (T*TO,Z’ Zt:To,ri»l FtFt > T-To,; Et:Toyri»l Ftelt'

Proof of Theorem [0 Note that
(B’ictrl_gfreat)_(/Bl{:trl_lgfreat) _ (ZTZ) 1ZT((Cct(TO AT Cct(TO )T ) (CfQZ%terl) - CfT(%tz+1) T))
We have

((Cctrl Cctrl) (Ctreat Ctreat) )
— (Ft _ (HT)—IFt)TH(/\thrl _ /\;‘:reat) + (Xlgtrl _ H)\thrl)T(HT)—lFt

—1
T 1 T T 1 T _ 1
—F (T—To,i Zt:To,H-l 1 ) T—To. Zt:To,H—l Fieit + op (5NT)

~ —1
- 1 ET 1 ZT
()‘zml - H)‘zqtrl)T(HT) 1Ft and FtT (T*To,i t=Tp,;+1 FtFJ) T—Tp,; +=t=To,i+1 Fiejy are asymptot-
ically independent because the first term is determined by the errors on the control panel while the

second term is determined by the errors on the treated panel.
Thus, from Lemma [2] and Theorem

Mt—Tomt—To,i

T
= AVar(Onr-m,, (N — HEXTYT(HT) 7L, — Z FF,')~ > Feu))
U =Ty 41 (”t Toi+1
6?V7T*To,i Ty—ly—1 ctriNT - ctrl —1y—1 512V,T*To,¢ Ty—1 —1
— 1 B ey (i + (A7) @ DERi(A]" ® 1))X) " Ep Ft+T_7%Ft Yp Ui By
)
Moreover,
Mt—To,i7S—To,i
~ 1 d 1 d
= Cov(dnr—m,, (X" —katﬂ)T(HT)*lFt—FtT(T_iTOi Z FuFJ)’lm Z Fue),
’ “:TO,i+1 " u=Ty+1

1 1
6 )\CtTl H)\Ct’l“l HT lF FT F FT F
N,T— TOz(( ) ( ) (T To.q TZ ) T —Th, To. Z wCiu)
u=Tp,;+1 u=Tp,;+1

2
5N,T—To,i
T —"To,

2
5N,T—T0,Z~

= EIS2 0 M@+ (AT @ DER(A\ @ 1) 2 'S5 Fy +

2AD Sps ) ity o
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We also need to consider the asymptotic distribution for (F, — (HT ) F,)TH (Agtrt — Afreat) " which
is driven by the variance correction term (the term in Assumption 3) from Assumption
MZJm = COU((SN,T—To,i(ZTZ)_lzl(ﬁlJrTo,i - (HT)_lFlJrTo,z‘)TH()‘zctrl - )‘great)a
5N7T—To,i(ZTZ>7lzm(ﬁm+To,i - (HT)ilFm-&-To,i)TH(/\zgtrl - /\Ereat))
512V,T—T0,i

= T(/\;?trl _ /\great)TEXIGA,i,Z,lmle()\gtrl o )\;?reat)

Thus,

Swrom, (2722 M) Z 2y 4 0) (Bt = Bireet) — (57— B % N (0,1)

O]
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