Anatomy of Corporate Borrowing Constraints*

Chen Lian1 and Yueran Ma2

1Massachusetts Institute of Technology
2University of Chicago Booth School of Business

February 25, 2019

Abstract

Macro-finance analyses commonly link firms’ borrowing constraints to the liquidation value of physical collateral. For US non-financial firms, we show that 20\% of debt by value is collateralized by physical assets (“asset-based lending” in creditor parlance), whereas 80\% is based predominantly on cash flows from firms’ operations (“cash flow-based lending”). A standard borrowing constraint restricts total debt as a function of cash flows measured using operating earnings (“earnings-based borrowing constraints”). These features shape firm outcomes on the margin: first, cash flows in the form of operating earnings can directly relax borrowing constraints; second, firms are less vulnerable to collateral damage from asset price declines, and fire sale amplifications may be mitigated.

Key words: Cash flow-based lending; Earnings-based borrowing constraints; Macro-finance modeling; Financial acceleration.

*We are grateful to Daron Acemoglu, Marios Angeletos, Douglas Baird, Larry Christiano, Douglas Diamond, Martin Eichenbaum, Emmanuel Farhi, Fritz Foley, Simon Gilchrist (discussant), Ed Glaeser, Dan Greenwald (discussant), Robin Greenwood, Sam Hanson, Bengt Holmstrom, Victoria Ivashina, Amir Kermani, Raghuram Rajan, David Scharfstein, José Scheinkman, Andrei Shleifer, Alp Simsek, Paolo Surico, David Thesmar, Ivan Werning, Tom Winberry, Chunhui Yuan, conference participants at NBER Monetary Economics Meeting, NBER Summer Institute (Impulse and Propagation), AEA Annual Meeting, and seminar participants at Columbia, CREI, Harvard, and MIT for very helpful suggestions. We are also thankful to finance and legal professionals Sarah Johnson, Christopher Mirick, Andrew Troop, Marc Zemmer, and especially Kristin Mugford for sharing their knowledge. Supplementary Appendix online please click here. First draft: May 2017. Email: lianchen@mit.edu; yueran.ma@chicagobooth.edu.
1 Introduction

Borrowing constraints of firms play a critical role in macroeconomic analyses with financial frictions. What determines these borrowing constraints? In some work, borrowing capacity depends on cash flows from firms’ operations (Townsend, 1979; Stiglitz and Weiss, 1981; Holmstrom and Tirole, 1997). More recently, however, the spotlight fell on the liquidation value of physical assets that firms can pledge as collateral (Hart and Moore, 1994; Shleifer and Vishny, 1992; Kiyotaki and Moore, 1997; Bernanke, Gertler, and Gilchrist, 1999).

The type of borrowing constraint can have an important impact on macro-finance mechanisms. For example, classic financial acceleration through asset price feedback hinges on borrowing constraints tied to the liquidation value of collateral, as articulated by Kiyotaki and Moore (1997). Furthermore, different forms of constraints also have different implications for credit allocation and efficiency, responses to monetary policy, economic recovery, among others (Lorenzoni, 2008; Dávila and Korinek, 2017; Bernanke and Gertler, 1995; Diamond, Hu, and Rajan, 2017). As the Great Recession inspires growing interest in macro-finance modeling, a key question is what types of constraints apply and in what setting?

In this paper, we collect detailed data on US non-financial corporate debt to empirically investigate this question. We document the central role of firms’ cash flows (not necessarily physical collateral value) for corporate borrowing in the US, using a newly constructed dataset that integrates a number of data sources along with hand-collected data. The dataset features two components: one is a classification of debt based on the primary determinants of payoffs in default, for the aggregate non-financial corporate sector as well as individual debt at the firm level; the other is debt limit requirements and sources of these restrictions. We then further document how the characteristics of corporate borrowing affect firm outcomes on the margin. We also study the implications of our findings for the applicability of macro-finance mechanisms.

We begin by presenting two main facts about corporate borrowing in the US. First, borrowing against cash flows accounts for the majority of US non-financial corporate debt. Specifically, we find that 20% of corporate debt is based on the liquidation value of specific physical assets (e.g. real estate, inventory, equipment, receivables, what creditors commonly refer to as “asset-based lending”), both in terms of aggregate dollar amount outstanding and for a typical large non-financial firm (assets above Compustat median). The debt is secured by these specific assets as collateral, whose liquidation value is the key determinant of creditors’ payoffs in bankruptcy. Asset-based debt is analogous to borrowing against “land” in Kiyotaki and Moore (1997). Meanwhile, 80% of corporate debt is based on the going-concern value of cash flows from firms’ operations (what creditors refer to as “cash flow-based lending”). The debt is not tied to specific assets, and the key determinant of
creditors’ payoffs in US Chapter 11 bankruptcy is the cash flow value from operations of the restructured firm. As we discuss in Section 2.1, cash flow-based can be either secured (by the corporate entity to gain priority in bankruptcy) or unsecured. Cash flow-based debt is analogous to borrowing against “fruit” in Kiyotaki and Moore (1997). We verify that the amount of cash flow-based debt a firm has does not have indirect positive dependence on physical asset value. Overall, the composition of corporate debt suggests that the liquidation value of physical assets may not be the defining constraint for major US non-financial firms.

Second, with the prevalence of cash flow-based lending, borrowing constraints commonly rely on a specific measure of cash flows. They stipulate that a firm’s total debt or debt payments cannot exceed a multiple of EBITDA (earnings before interest, taxes, depreciation and amortization) in the past twelve months. We refer to these constraints as earnings-based borrowing constraints (EBCs). EBCs restrict total debt at the firm level, rather than the size of a particular debt contract. A primary source of EBCs is financial covenants in cash flow-based loans and bonds. Those in loans monitor compliance on a quarterly basis, so the constraint is relevant not just for issuing new debt, but also for maintaining existing debt. Among large non-financial firms, around 60% have earnings-based covenants explicitly written in their debt contracts. Given contracting constraints, creditors focus on current EBITDA as a principal metric of cash flow value, which is informative as well as observable and verifiable.

Corporate borrowing based on cash flows is not always the norm. Its feasibility and practicality rely on legal infrastructure (e.g. accounting, bankruptcy laws, court enforcement) and on firms generating sufficient cash flows. Once these conditions are met, cash flow-based lending can be more appealing than pledging specific assets, as most corporate assets are specialized, illiquid, or intangible. These factors shape several variations across firm groups in the prevalence of cash flow-based lending, and correspondingly the prevalence of EBCs. First, cash flow-based lending is less common among small firms (median share less than 10%), given low or negative earnings and higher likelihood of liquidation. The same applies to low profit margin firms. Second, while cash flow-based lending dominates in value in most industries, there are exceptions such as airlines where firms have a substantial amount of standardized transferable assets.1 Finally, the prevailing form of corporate borrowing can vary across countries given differences in institutional environments, which we illustrate using the example of Japan.

After documenting the prevalence of cash flow-based lending and EBCs based on debt contracts, we further investigate how it shapes the way financial variables affect firms’ borrowing constraints and outcomes on the margin. With cash flow-based lending and EBCs, cash flows in the form of operating earnings can directly relax borrowing constraints, and

1The high share of asset-based lending in airlines is consistent with Benmelech and Bergman (2009) and Benmelech and Bergman (2011), who thoroughly analyze the collateral channel in this industry.
enable firms to both borrow and invest more. Meanwhile, firms’ sensitivity to the value of physical assets, such as real estate, may diminish. Taken together, major US non-financial firms do face borrowing constraints, but the primary constraint appears different from the physical collateral constraints commonly used in the macro-finance literature. We finally contrast the US with Japan, where asset-based lending dominates.

We begin by studying the impact of cash flows in the form of operating earnings on relaxing borrowing constraints. We start with a baseline test following standard investment regressions, with a few modifications. First, we examine debt issuance as the outcome variable to investigate the response of borrowing, and then proceed to investment. Second, we focus on the role of operating earnings (EBITDA), which directly affect EBCs. Third, we start with firms where cash flow-based lending and EBCs are most important, specifically large firms with earnings-based covenants, and then analyze several firm groups where EBCs are less relevant. We find that among large firms with EBCs, all else equal, a one dollar increase in EBITDA is on average associated with a 27 cents increase in net long-term debt issuance. Investment activities increase by about 15 cents. These patterns do not exist among other firm groups not bound by EBCs (e.g. unconstrained firms and firms that primarily use asset-based lending, such as small firms, low margin firms, airlines and utilities, Japanese firms). The set of results across different firm groups is not easy to account for based on standard empirical concerns (e.g. Q mismeasurement), which we discuss in detail.

We also study a natural experiment that contributes to exogenous variations in operating earnings (EBITDA), due to changes in an accounting rule (SFAS 123(r)). Before the adoption of this rule, firms’ option compensation expenses do not count towards operating earnings, while the new rule requires their inclusion. Thus the rule affects the calculation of operating earnings, but does not directly affect firms’ cash positions or economic fundamentals. As prior research shows, contracting frictions make it hard to neutralize changes in accounting rules, and they can have a significant impact through debt covenants (Frankel et al., 2010; Moser et al., 2011; Shroff, 2017). We instrument operating earnings after the adoption of SFAS 123(r), using average option compensation expenses in three years prior to the rule announcement. We find significant first-stage results among all firm groups. We find significant second stage results of operating earnings on debt issuance and investment among firms bound by EBCs, but not otherwise.

The above analysis also points to a new perspective for the investment sensitivity to cash flows. In the traditional corporate finance literature (Fazzari, Hubbard, and Petersen, 1988; Froot, Scharfstein, and Stein, 1993; Kaplan and Zingales, 1997; Rauh, 2006), for instance, the role of cash flows is to increase internal funds: following the pecking order idea (Myers and Majluf, 1984), more internal funds boost investment but substitute out external financing as long as investment has diminishing marginal returns. With cash flow-based lending and
EBCs, however, cash flows in the form of operating earnings can raise investment by directly relaxing borrowing constraints.

While the prevalence of cash flow-based lending in the US contributes to the sensitivity of corporate borrowing and investment to cash flows (especially operating earnings), it may diminish the sensitivity to the value of physical assets such as real estate (which accounts for only 7% of US non-financial corporate debt by value). Using both traditional estimates of firm real estate value and hand collected property-level data from company filings, we document that US large non-financial firms’ borrowing has relatively small sensitivity to real estate value, concentrated in asset-based debt. For cash flow-based debt, the sensitivity is absent, if not negative and offsetting the response of asset-based debt. Overall, borrowing increases by three to four cents on average for a one dollar increase in property value, consistent with findings by Chaney, Sraer, and Thesmar (2012). The magnitude is considerably smaller than the impact of operating earnings among US large firms.

This observation helps understand aspects of the Great Recession and the transmission of property value declines in this crisis. By exploiting firms’ differential exposures to property price declines, we do not find that the drop in the value of real estate assets had a significant impact on borrowing and investment. Such diminished sensitivity may decrease the scope of asset price feedback type of financial acceleration through firms’ balance sheets. Meanwhile, the decline in corporate earnings did have a significant impact through EBCs, which accounts for roughly 10% of the drop in debt issuance and capital expenditures among Compustat firms from 2007 to 2009. The magnitude is meaningful but not catastrophic, in line with the view that the US Great Recession is a crisis centered around households and banks rather than major non-financial firms.

The story in the US finds its antithesis in Japan. Unlike the US where cash flow-based lending prevails, Japan historically lacked legal infrastructure for such lending practices, and instead developed a corporate lending tradition focused on physical assets, especially real estate. We show that Japanese firms do not display sensitivity of debt issuance to operating earnings. Japanese firms are, however, very sensitive to declines in the value of real estate assets during the Japanese property price collapse in the early 1990s (Gan, 2007). We do not find similar results among US firms during the Great Recession. As different legal institutions shape different corporate borrowing practices across countries, distinct macrofinance mechanisms may apply.

Finally, we lay out further implications of the prevalence of cash flow-based lending and EBCs. Based on the standard model of Kiyotaki and Moore (1997), we study financial acceleration in general equilibrium with different borrowing constraints (collateral-based constraints vs. EBCs). With cash flow-based lending and EBCs, we find that asset price feedback dissipates significantly. We also study the implications for economic recovery, transmission
of monetary policy, and credit access and allocation.

The domain of our analysis is non-financial corporations. Financial institutions’ borrowing constraints may take different forms, and tie to the liquidation value of securities pledged as collateral. The ensuing fire-sale amplifications have been thoroughly analyzed (Shleifer and Vishny, 1997; Coval and Stafford, 2007; Garleanu and Pedersen, 2011), which map closely to models of asset price feedback (Shleifer and Vishny, 1992; Kiyotaki and Moore, 1997; Bernanke et al., 1999; Brunnermeier and Sannikov, 2014). Small businesses’ constraints may also be different and significantly dependent on real estate value, making them highly exposed to property price fluctuations through collateral value (Adelino et al., 2015). For residential mortgages, Greenwald (2018) documents the role of “payment-to-income” constraints, a form of constraint similar to the earnings-based constraints we study among firms.²

1.1 Related Literature

Our paper relates to several strands of research. First, borrowing constraints of firms are central in macro-finance models (Hart and Moore, 1994, 1998; Shleifer and Vishny, 1992; Kiyotaki and Moore, 1997; Bernanke et al., 1999; Holmstrom and Tirole, 1997; Lorenzoni, 2008; Dávila and Korinek, 2017; Di Tella, 2017).³ We shed light on this literature by collecting detailed data to empirically document the prevalent form of corporate borrowing (cash flow-based lending) and key borrowing constraints (EBCs) among US non-financial firms. We show that different forms of corporate borrowing can have distinct implications. Macro-finance mechanisms may not apply uniformly across the board; theoretical analyses may need to adjust to the setting of interest.

Second, our work connects research on corporate debt to questions in macro-finance. Rauh and Sufi (2010) show that firms’ debt composition displays heterogeneity in terms of debt types, sources, and priority. We analyze a key aspect of debt heterogeneity, i.e. asset-based lending vs. cash flow-based lending: we study their characteristics, prevalence, contracting foundations, and implications for macro-finance mechanisms. Our findings resonate with the recognition in Gennaioli and Rossi (2013) that corporate debt is not necessarily

²As Greenwald (2018) shows, in residential mortgages the “payment-to-income” (PTI) constraints coexist with the “loan-to-value” (LTV) constraints. In this setting, creditors’ claims are primarily tied to the property that serves as collateral, and LTV is the primary constraint. However, seizing and liquidating collateral is not frictionless, so PTI may also be used as a secondary constraint to reduce foreclosure costs (in the cases where seizing collateral is close to costless, e.g. margin loans against financial securities, collateral/margin constraints are first-order and cash flow constraints are absent).

about the liquidation value of specific assets, in contrast with the conventional view. As we
discuss in detail in Section 2.1, asset-based debt vs. cash flow-based debt is different from
the commonly used notion of secured vs. unsecured debt: under US law, security is about
priority in bankruptcy, not the economic determinants of creditors’ payoffs. We also build
on studies of financial covenants: Sufi (2009), Roberts and Sufi (2009), and Nini, Smith, and
Sufi (2012) among others demonstrate that violations of financial covenants have significant
consequences for firms’ operations. We show that cash flow-based lending is the primary set-
ting for financial covenants, and such covenants are an important source of earnings-based
borrowing constraints.

Third, our investigation of corporate borrowing informs several studies of financial fric-
tions and the macroeconomy which utilize our findings. Cloyne, Ferreira, Froemel, and Surico
(2018) find that young firms, which rely more heavily on asset-based lending, experience more
financial acceleration in response to monetary policy shocks. Greenwald (2019) analyzes how
interest coverage ratio constraints, a particular form of EBCs, affect the transmission of mon-
etary policy. Drechsel (2019) builds a business cycle model to study the impact of investment
opportunity shocks under collateral constraints vs. earnings-based constraints.

Fourth, corporate borrowing practices develop based on legal infrastructure (La Porta,
Lopez-de Silanes, Shleifer, and Vishny, 1997, 1998; Djankov, Hart, McLiesh, and Shleifer,
2008). We suggest that legal institutions may have a significant impact on lending practices
and the applicability of macro-finance mechanisms.

The rest of the paper is organized as follows. Section 2 documents the features of corpo-
rate borrowing in the US. Section 3 studies the impact of cash flows on borrowing constraints
and firm outcomes; Section 4 studies the impact of property collateral value, and implica-
tions for the transmission of shocks in the Great Recession. Section 5 discusses additional
macro implications. Section 6 concludes.

2 Corporate Borrowing in the US

In this section, we document two main facts about corporate borrowing in the US. First,
in the aggregate and among large firms, the majority of corporate debt is based on cash flows
from operations ("cash flow-based lending"), as opposed to the liquidation value of physical
assets ("asset-based lending"). Second, in this setting, a standard form of borrowing con-
straint is tied to a specific measure of cash flows, namely operating earnings, which we refer
to as earnings-based borrowing constraints (EBCs). Finally, we also discuss determinants of
these practices and variations across firms and countries.

To study these facts, we collect data from a number of sources. We utilize many sources
as corporate debt information is often scattered: each dataset covers some specific types of
debt, or some specific debt attributes. Combining many sources also allows us to cross check results using different datasets and enhance accuracy. The first part of our data focuses on debt composition, and uses key features to categorize debt into asset-based and cash flow-based lending. We provide aggregate estimates for the total non-financial corporate sector, which includes both public and private firms. We also perform firm-level analyses for the majority of Compustat firms since 2002. The second part of our data focuses on EBCs. For non-financial firms in Compustat since 1996, we record legally binding constraints specified in firms’ debt contracts, including loans and bonds. We also verify the sources of these constraints by manually reading firms’ disclosures in annual reports for a random sample in 2005.

2.1 Fact 1: Prevalence of Cash Flow-Based Lending

We first study the composition of corporate borrowing, and document the prevalence of cash flow-based lending among US non-financial firms.

Asset-Based Lending vs. Cash Flow-Based Lending

We describe asset-based lending and cash flow-based lending from three aspects: 1) general definition, 2) debt structure and default resolution (focusing on the case of Chapter 11 restructuring-based bankruptcy, which accounts for over 90% of corporate bankruptcy filings in the US by value), and 3) typical examples.

Asset-based lending:

- General definition: In asset-based lending, the debt is based on the liquidation value of specific assets (e.g., real estate, equipment, inventory, receivables, etc.): creditors’ payoffs (in default) are driven by the liquidation value of specific assets. Asset-based debt is analogous to debt against “land” in Kiyotaki and Moore (1997).

- Debt structure and default resolution: For asset-based debt, creditors take collateral against specific assets, and have claims backed by the liquidation value of these specific assets. In particular, in bankruptcy creditors have a secured claim up to the value of the collateral; if this value falls short of the debt claim, then creditors have a secured claim up to the collateral value plus an unsecured claim for the remaining under-collateralized portion of the debt claim (Gilson, 2010). Given that unsecured claims generally have low recovery rates, the primary determinant of payoffs in default is the liquidation value of the collateral.

4Chapter 11 filings may get converted to Chapter 7 if the going-concern value of the firm is less than the liquidation value of the assets. In Chapter 7, asset-based debt receives the liquidation value of the specific assets pledged to them as collateral; cash flow-based debt receives remaining liquidation value, if any, which tends to be minimal.
• Common examples: Examples of asset-based lending include commercial mortgages (backed by commercial real estate) and other asset-based loans (backed by inventory, receivable, machinery and equipment, etc.). Each debt typically has a size limit based on the liquidation value of the particular assets pledged as collateral for that debt. The limit is enforced throughout the duration of the debt in some cases (e.g. revolving credit lines based on working capital), and enforced only at issuance in others (e.g. commercial mortgages).

Cash flow-based lending:

• General definition: In cash flow-based lending, the debt is based on the value of cash flows from the firm’s continuing operations: creditors’ payoffs (in default) are driven by the going-concern cash flow value of the firm. Cash flow-based debt is analogous to debt against “fruit” in Kiyotaki and Moore (1997).

• Debt structure and default resolution: For cash flow-based debt, creditors have claims whose value in bankruptcy depends primarily on the going-concern cash flow value of the reorganized firm (Gilson, 2010). Cash flow-based debt can be secured by the corporate entity (“substantially all assets” in legal parlance) or unsecured. Under US bankruptcy law, the key function of secured cash flow-based debt is to establish priority in bankruptcy (secured claims have priority over unsecured claims), not to enforce payments against the liquidation value of specific assets. In particular, in Chapter 11, the restructuring process produces an evaluation of the going-concern value of the firm. The going-concern value (minus the liquidation value of specific assets pledged to asset-based debt) determines the payoffs of cash flow-based debt. The value is first distributed to secured cash flow-based debt and then to unsecured debt.

• Common examples: Examples of cash flow-based lending include the majority of corporate bonds and a significant share of corporate loans such as most syndicated loans. For debt limits, creditors do not focus on the liquidation value of physical assets; they focus instead on assessing and monitoring firms’ cash flows from operations, which we discuss further in Section 2.2.

In summary, in asset-based lending the debt is based on the liquidation value of specific assets, while in cash flow-based lending the debt is based on the going-concern cash flow value of the firm. These two types of values can be quite different for at least three reasons. First, the structure or management of the firm can add substantial value, so the whole is more than the sum of the pieces (Williamson, 1975; Grossman and Hart, 1986). Second, the firm may derive value from human capital (Kiyotaki and Moore, 1997). Third, for non-financial firms, many assets used in production are highly specialized and alternative buyers are few
(Shleifer and Vishny, 1992; Ramey and Shapiro, 2001). As suggested above, the US Chapter 11 bankruptcy procedure is crucial for keeping assets in their original use and preserving the organizational structure and the human capital of the firm. Its provisions allow creditors to enforce debt claims against going-concern cash flow value (not just the liquidation value of specific assets as in Kiyotaki and Moore (1997)).

Accordingly, there is an important distinction between asset-based lending and cash flow-based lending among US non-financial firms. This distinction is also different from secured vs. unsecured debt, which is about priority under US law (Baird and Jackson, 1984), rather than about the economic variables that determine creditors’ payoffs.

Classification Procedures

We perform the classification both in the aggregate (for non-financial corporate sector overall, including public and private firms), and at the firm-level (for the majority of Compustat non-financial firms). We summarize the classification procedures below, and explain the details in Appendix A.1 and A.2. We then present the results and test the properties of asset-based vs. cash flow-based debt afterwards.

Aggregate Composition. For the aggregate estimates, we first analyze the composition of each of the major debt classes, e.g. mortgages (all asset-based), corporate bonds (primarily cash flow-based), commercial loans (combination of asset-based and cash flow-based), etc. The data we use include Flow of Funds, bond aggregates from FISD, large commercial loan aggregates from SNC, DealScan, ABL Advisors, small business loan aggregates from SBA and Call Reports, capital lease estimates from Compustat, etc. We then sum up asset-based lending and cash flow-based lending across the major debt classes to get the total estimates.

Firm-Level Composition. For firm-level composition, we first collect debt-level data on debt attributes and collateral structure. The primary source is debt descriptions from CapitalIQ, supplemented with bond data from FISD, loan data from DealScan, and additional information from SDC Platinum.

For each debt, we classify it as asset-based if one of the following criteria is met: a) we directly observe the key features of asset-based lending (e.g. collateralized by specific assets or have borrowing limits tied to them); b) the debt belongs to a debt class that is usually asset-based (e.g. secured revolving lines of credit, finance company loans, capital leases, small business loans, etc.), or it is labeled as asset-based; c) all other secured debt that does not have features of cash flow-based lending (discussed below) to be conservative (i.e. we may over-estimate rather than under-estimate the amount of asset-based lending). We leave personal loans (from individuals, directors, related parties, etc.), government loans, and miscellaneous loans from vendors and landlords unclassified (neither asset-based nor cash flow-based); their share is less than one percent in the aggregate, but can be more significant among certain small firms.
We classify a debt as cash flow-based if one of the following criteria is met: a) it is unsecured, or secured by the corporate entity or pledge of stock and does not have any features of asset-based lending; b) the debt belongs to a debt class that is primarily cash flow-based (e.g. corporate bonds other than asset-backed bonds and industrial revenue bonds, term loans in syndicated loans), or it is labeled as cash flow-based.

Results

In the aggregate, among total US non-financial corporate debt outstanding, we find that asset-based lending accounts for roughly 20% of debt by value, of which 7% are mortgages (secured by real estate) and the rest are other asset-based loans (secured by receivable, inventory, equipment, etc.). Meanwhile, cash flow-based lending accounts for about 80% of debt by value, of which 50% are corporate bonds and 30% are cash flow-based loans.

For individual firms, results are similar in large non-financial firms. Among the larger half of Compustat firms (by assets), the median share of asset-based lending is 12%, while that of cash flow-based lending is 83%. Among rated firms, the median share of asset-based lending is 8%, while that of cash flow-based lending is 89%.

In Figure 1 Panel A, we also aggregate up firm-level data and plot the share of cash flow-based and asset-based lending by year among large non-financial firms in Compustat: in recent years, the share of cash flow-based lending is consistently 80% and that of asset-based lending is consistently 20%.

Does cash flow-based debt depend indirectly on the liquidation value of specific assets?

One question is whether firms’ ability to borrow what is classified as cash flow-based debt may have indirect positive dependence on the value of specific hard assets. In theory, given that creditors of asset-based debt have claims over these assets while creditors of cash flow-based debt do not, a higher value of specific physical assets may increase the bargaining power of creditors of asset-based debt. This, if anything, can decrease the bargaining power of creditors of cash flow-based debt and limit firms’ ability to borrow cash flow-based debt. In the data, we confirm that the amount of asset-based debt a firm has is positively correlated with the amount of physical assets, whereas the amount of cash flow-based debt is not (if anything the correlation is often negative), as shown in Table 2.

Difference with Secured vs. Unsecured Debt

Finally, as discussed above, the notion of asset-based debt vs. cash flow-based debt is different from the notion of secured debt vs. unsecured debt. Under US law, secured vs. unsecured debt is about priority in bankruptcy, not about the economic variables that deter-

5Rauh and Sufi (2010) study debt structure of 305 rated firms, and provide firm-level data for debt outstanding by debt class (e.g. public bonds, revolvers, mortgages). With assumptions about whether each debt class is asset-based or cash flow-based (e.g. public bonds are cash flow-based, mortgages are asset-based, revolvers are a mix), we can get another estimate of debt composition. This alternative estimate and our firm-level calculations match closely; the median level matches one for one for firm-years in both samples.
mine creditors’ payoffs. On the other hand, our distinction between asset-based vs. cash flow-based debt is focused on the economic bases of creditors’ claims and payoffs (i.e. liquidation value of specific assets vs. going concern value of the firm, or analogously lending against “land” vs. “fruit” in Kiyotaki and Moore (1997)). For the determinants of borrowing constraints and the macro-finance implications we study, it is this distinction that matters.

In the data, for Compustat non-financial firms, about 1/3 of total secured debt is cash flow-based debt. Secured cash flow-based debt also behaves similarly to cash flow-based debt in general, and quite differently from asset-based debt. Table 2 shows that secured cash flow-based debt is negatively correlated with the amount of hard assets, which is the opposite of asset-based debt.

Taken together, we find that cash flow-based lending accounts for the majority of US corporate debt, in the aggregate and among large firms. In the following, we document a central form of borrowing constraints in this setting.

2.2 Fact 2: Prevalence of Earnings-Based Borrowing Constraints

The second stylized fact shows that, in the context of cash flow-based lending, a common form of borrowing constraint stipulates debt limits based on a specific measure of cash flows, operating earnings. We refer to this type of constraints as earnings-based borrowing constraints (EBCs). EBCs follow two main specifications. The first is a limit on the ratio of a firm’s debt to its operating earnings:

\[b_t \leq \phi \pi_t \]

where \(\pi_t \) is the firm’s annual operating earnings, \(b_t \) is the firm’s debt, and \(\phi \) is the maximum ratio. The second is a limit on the minimum amount of earnings relative to debt payments (equivalently, maximum debt payments to earnings):

\[b_t \leq \frac{\theta \pi_t}{r_t} \]

where \(r_t b_t \) is the firm’s total interest payments, and \(\theta \) is the minimum coverage ratio.

EBCs have several features. First, the constraint applies at the firm level: both earnings \(\pi_t \) and the amount of debt \(b_t \) (or debt payments \(r_t b_t \)) are those of the borrowing firm. This is different from, for instance, the “loan-to-value” constraint of a mortgage that applies only
to the size of that particular loan. At a given point in time, a firm may face earnings-based borrowing constraints from different sources, as we discuss shortly. Each of these constraints has a parameter ϕ or θ, and the tightest one binds first. Second, the commonly used measure for π_t is EBITDA (earnings before interest, tax, depreciation, and amortization), over the past twelve months. As the name indicates, EBITDA excludes taxes and interest expenses. It also excludes non-operating income and special items (e.g. windfalls, natural disaster losses, earnings from discontinued operations). Third, EBCs apply not just when firms issue new debt; they can also affect the maintenance of existing debt. Even if a firm is not issuing new debt, if its earnings decline significantly, it may need to reduce debt to comply with these constraints imposed by existing debt (e.g. through covenants, as further explained below).

In the following, we discuss the sources and enforcement of EBCs.

Earnings-Based Debt Covenants

An important source of EBCs is financial covenants in debt contracts. Covenants are legally binding provisions in debt contracts that specify restrictions on borrowers; financial covenants are one type of covenants limiting borrowers’ financial conditions, assessed based on financial statements. Violations of covenants trigger “technical defaults,” in which case creditors have legal power to accelerate payments or terminate the credit agreement. While such actions are infrequent, creditors use them as a threat to request fees, restrict firms’ borrowing decisions, replace management teams, among others (Roberts and Sufi, 2009; Nini, Smith, and Sufi, 2009, 2012). Covenant violations incur significant costs to borrowers, and impost effective limits on borrowing as we further confirm below.

A common type of financial covenants specify debt limits as a function of EBITDA, which we refer to as earnings-based covenants. They follow the forms in Equations (1) and (2), and share the feature discussed above that the debt limits are at the firm level (so a firm is subject to constraint as long as one of its debt contracts contains such covenants). Earnings-based covenants can be found in both corporate loans and bonds. Those in loans generally monitor compliance on a quarterly basis (“maintenance tests”); thus continuous compliance is relevant for the maintenance of existing loans as well as the issuance of new debt, connected to the third feature discussed above. Those in bonds monitor compliance only when borrowers take certain actions such as issuing debt (“incurrence tests”), and are relevant for new debt issuance.

We study earnings-based covenants using three datasets: DealScan for commercial loans, FISD for corporate bonds, and scraped and hand collected data from annual reports (10-K filings). DealScan is the most widely used dataset for corporate loans, with comprehensive coverage (Strahan, 1999; Bradley and Roberts, 2015), especially for large syndicated loans (it may not cover small bilateral loans, mortgages, finance company loans). These large commercial loans are predominantly cash flow-based, and are the primary sources of earnings-
Based covenants as we verify below. DealScan provides data on covenant specifications and thresholds; Table A3 in Appendix B.1 lists the main specifications and the corresponding accounting variables compiled by Demerjian and Owens (2016). FISD is a comprehensive dataset for corporate bonds, with information on the type of covenant but not the covenant threshold. Finally, to check the comprehensiveness of data from DealScan and FISD and to better understand the sources of earnings-based covenants, we scrape firms’ 10-K filings and also manually read covenant-related discussions. Our sample covers US non-financial firms in Compustat from 1996 to 2015, as covenant data is relatively sparse prior to 1996.

Relationship with Cash Flow-Based Lending. We verify that earnings-based covenants primarily come from cash flow-based debt. To get a comprehensive picture allowing for earnings-based covenants from all types of debt (not just commercial loans and bonds), we read 10-K filings for a random sample of firms in 2005 (1,092 firms and 2,125 individual debt with earnings-based covenants). Among earnings-based covenants mentioned in 10-K filings, more than 80% come from debt that belong to cash flow-based lending (or is packaged with cash flow-based debt\(^8\)), such as cash flow-based commercial loans and corporate bonds. Few come from other types of debt (e.g. mortgages, equipment loans, capital leases).

Prevalence. Figure 1 Panel B merges covenant data from DealScan and FISD with Compustat, and shows that earnings-based covenants are prevalent among large firms. Of all large Compustat firms, about 50% to 60% have earnings-based covenants in their debt contracts.\(^9\) To make sure DealScan data does not miss covenant information, we also scrape mentions of financial covenants from 10-K filings. If we add mentions of earnings-based covenants from scraped data, the share of large firms with EBCs increases by another 5% per year (but the scraped data could contain false positives\(^10\)). Large firms as a whole account for more than 90% of the sales, investment, and employment of all Compustat firms. Those with earnings-based covenants account for about 60%. Some large firms do not have earnings-based covenants written in their debt contracts because they currently have little debt and are far from the constraints (e.g. Apple nowadays). Nonetheless, the constraint still exists and they are likely to have explicit debt covenants if the debt level is higher (e.g. Apple fifteen years ago).

In addition to earnings-based covenants, there are some other types of financial covenants.

\(^{8}\)Commercial loans are typically organized in a package that shares the same covenants: the package commonly contains a revolving credit line, which can be asset-based (secured by inventory and receivable), and cash flow-based term loans. Thus the revolving lines are also associated with earnings-based covenants although we categorize them into asset-based lending.

\(^{9}\)Examples include AAR Corp, AT&T, Barnes & Noble, Best Buy, Caterpillar, CBS Corp, Comcast, Costco, Disney, FedEx, GE, General Mills, Hershey’s, HP, IBM, Kohl’s, Lear Corp, Macy’s, Marriott, Merck, Northrop Grumman, Pfizer, Qualcomm, Rite Aid, Safeway, Sears, Sprint, Staples, Starbucks, Starwood Hotels, Target, Time Warner, US Steel, Verizon, Whole Foods, Yum Brands, among many others.

\(^{10}\)For instance, the covenant mentioned in the filing may be about a loan that is already paid off. Firms may also discuss, for example, “interest coverage ratio” and “leverage ratio” in general, not in relations to covenant requirements. These cases can be hard to cleanly tease out in the scraping process.
which are much less prevalent, as shown in Supplementary Appendix Section IA1.\footnote{Other financial covenants have two main forms. One type specifies an upper bound on book leverage, or relatedly a lower bound on book equity. The popularity of this type of covenant has declined in the past twenty years for several reasons that we discuss in the Supplementary Appendix Section IA1. Currently the prevalence of the book leverage covenants is less than a third of the prevalence of earnings-based covenants, and violations are uncommon. The other type specifies limits on the ratio of current assets to current liabilities, which also has relatively low prevalence.}

Violations and Tightness. We also confirm that violations of earnings-based covenants restrict borrowing. Here we focus on loan covenants, for which we have some information about covenant specifications and thresholds. Figure 2 plots firm-level debt growth in year \(t + 1 \) against distance to the covenant threshold at the end of year \(t \).\footnote{As shown in Table A3, earnings-based covenants have several variants. Firms sometimes have more than one type of these covenants; different firms may also have different types. For a uniform measure of distance, we first compute the minimum amount of earnings \((\text{π}_{it}) \) required such that the firm is in compliance with all of its earnings-based covenants (given the current level of debt). We then compute the difference between the minimum earnings required \((\text{π}_{it}) \) and the actual earnings \((\text{π}_{it}) \), scaled by lagged assets. We normalize this distance by the standard deviation of ROA in the firm’s 2-digit SIC industry.} It shows that debt growth is on average positive when firms are in compliance with earnings-based covenants (to the right of the dashed line), but becomes negative once firms break the covenants.\footnote{DealScan’s data allows us to observe the threshold set by the initial credit agreement (at loan issuance). Firms may subsequently renegotiate with lenders to amend credit agreements and relax covenants, and these amendments may not be fully captured by DealScan’s data. Thus the actual threshold may end up being slightly looser than the ones in our data. Nevertheless, we already observe a pause in debt growth once the initial threshold is reached.} The evidence suggests that earnings-based covenants serve as effective borrowing constraints. It is consistent with previous research that provides in-depth analyses of covenant violations, and how they restrict corporate borrowing and financial decisions (Chava and Roberts, 2008; Roberts and Sufi, 2009). Figure 3 shows that firms bunch near the constraint, indicating violations are costly and borrowers try to avoid them.

For the tightness of earnings-based covenants, the median value of \(\phi \) in the debt-to-earnings constraint in Equation (1) is about 3.5 (interquartile range roughly 3 to 4.5); the median value of \(\theta \) in the coverage ratio constraint in Equation (2) is about 1/2.5 (interquartile range roughly 1/2 to 1/3). Every year around 10% of large firms with DealScan loans break the covenant thresholds; another 10% to 15% are within 0.5 standard deviations of the thresholds. These statistics are consistent with prior work (Nini, Smith, and Sufi, 2012). The constraints are tight and relevant.\footnote{The fraction of firms violating covenants or are close to violation does not show strong cyclical patterns. First, earnings of major US non-financial firms do not have substantial cyclical swings. Second, firms are not passive; they adjust debt level and control their distance to violation.}

Other Earnings-Based Borrowing Constraints

The earnings-based borrowing constraints a firm faces are not limited to financial covenants. The corporate credit market has important norms about debt relative to earnings: when a firm wants to issue debt, it can be hard to surpass a reference level of debt to EBITDA ratio lenders are accustomed to. This limit can be tighter than covenants in existing debt or in
the new debt (the covenants of the new debt, if there are any, are typically set in a way that they will not be violated immediately). These earnings-based constraints at issuance are especially relevant for non-investment grade firms, which are closer to the limit. Such firms also commonly borrow from the leveraged loan market, where the reference debt to EBITDA ratio is emphasized the most. We document the impact of these additional constraints in Appendix B.2 using measures of the reference level in the leveraged loan market.

In sum, earnings-based borrowing constraints play an important role in US corporate credit markets, and tie closely to the prevalence of cash flow-based lending. In Supplementary Appendix Section IA2, we provide formal models to analyze the contracting functions of earnings-based covenants in cash flow-based lending, including incentive provision (Innes, 1990) and contingent transfer of control rights (Aghion and Bolton, 1992). We also discuss why creditors focus on current EBITDA as a key metric: within contracting constraints, current EBITDA strikes a balance between being informative about firm performance and cash flow value, and importantly being observable and verifiable. For instance, EBITDA excludes windfalls to focus on cash flow generation by core businesses; it excludes interest expenses and taxes to exclude mechanical influence due to capital structure (e.g. tax advantages of debt). Moreover, it is available on a regular basis based on financial statements.

2.3 Heterogeneity in Corporate Borrowing

Our previous discussions focus on large US non-financial firms. Corporate borrowing based on cash flows is not always the norm. The primary form of borrowing varies across large and small firms, in certain industries, and across countries, which we summarize below. These variations are driven by three main factors that affect the feasibility and utilization of cash flow-based lending: legal foundations, firms’ cash flow generating ability, and asset specificity. First, the feasibility of lending and contracting based on cash flows relies on legal infrastructure, including reliable financial accounting and auditing, as well as statues (especially bankruptcy laws) and court enforcement that ensure lending based on cash flows can get paid back on average. With weak accounting, weak courts, or bankruptcy regimes that tie creditors’ payoffs to the liquidation value of physical assets, cash flow-based lending could be harder to pursue. Second, firms also need to be able to generate sufficient cash flows for cash flow-based lending to be practical. Third, among firms that can access both asset-based and cash flow-based lending, the relative utilization can depend on asset attributes. Most large US firms have a small amount of standardized transferable assets that support low-cost asset-based lending. The majority of assets, however, are specialized, illiquid, or intangible (Ramey and Shapiro, 2001), and the US institutional environment makes cash flow-based lending more appealing. In some industries such as airlines, firms have a large share of standardized transferable assets, which facilitate asset-based lending.
Variations in the US

Small Firms. Cash flow-based lending and EBCs are much less common among small firms. The median share of cash flow-based lending is about 7% (while the median share of asset-based lending for these firms is 61%; the rest are personal loans from individuals and other miscellaneous borrowing). EBCs are found in only 12% of small firms (assets less than Compustat median). The majority of small firms have little profits if not sustained losses (Denis and McKeon, 2016).\(^{15}\) In addition, financial distress of small firms is more likely to be resolved through liquidations (Bris, Welch, and Zhu, 2006; Bernstein, Colonnelli, and Iverson, 2018), given the fixed costs of restructuring (e.g. legal and financial personnel) and the uncertain prospects of small firms. This makes it harder for creditors to count on cash flow value from continuing operations. With limited access to cash flow-based lending, small firms rely significantly on physical assets to obtain credit. Due to the same set of reasons, cash flow-based lending is less common (median share 38%) while asset-based lending is more prevalent (median share 47%) among young firms (less than 15 years since incorporation date), a fact utilized by Cloyne et al. (2018).

Low Profitability Firms. Similar to the case of small firms, firms with low profitability and low margins also have substantially lower shares of cash flow-based lending (higher shares of asset-based lending), and lower prevalence of EBCs. Among low margin firms (profit margin in the bottom half of all Compustat firms), the median shares of cash flow-based lending and asset-based lending are 41% and 39% respectively, while among high margin firms the median shares are 74% and 19% respectively.

Airlines and Utilities. Figures 4 shows corporate borrowing in different industries, focusing on rated firms so they are comparable in size and capital market access. Rated firms in most industries display a dominance of cash flow-based lending. Airlines are an exception where the median share is less than 30% (e.g. even large airlines like American, United, and Delta have around 70% of debt that is asset-based). Utilities also have a lower share of cash flow-based lending compared to other Fama-French 12 industries. These industries are special cases where firms have a large amount of standardized, transferable assets (aircraft and power generators) that facilitate asset-based lending.

Cross-Country Variations

Across countries, lending practices may vary given different legal infrastructure (La Porta et al., 1997, 1998). In most developing countries, high quality accounting information can be a major hurdle. Among developed countries, differences in accounting quality still exist but may not first order (especially among established firms). Differences in laws and practices regarding financial distress seem more important (Gennaioli and Rossi, 2013). In the US, the

\(^{15}\)For instance, the median EBITDA to assets ratio among small Compustat firms is -0.01 (while that among large Compustat firms is 0.13).
tenet of Chapter 11 is to prevent liquidations and preserve cash flow value from continuing operations (going-concern value). The Chapter 11 reorganization procedure is key to enforcing debt claims based on cash flow value, and attenuates the role of physical collateral. In continental Europe, liquidations are more common and having claims over specific assets is more important in default resolution (Smith and Stromberg, 2004; Djankov et al., 2008).

In major developed countries, legal infrastructure and lending practices in Japan traditionally lie at the other end of the spectrum from the US. Prior to 2000, bankruptcy courts in Japan were largely dysfunctional, due to limited court capacity and provisions that discouraged companies from filing for bankruptcy protection. Without court supervision, it is harder to contract on cash flow value and enforce corresponding payouts. In addition, there are no stays that prevent creditors from seizing collateral and disrupting efforts for reorganization. Thus, physical collateral that can be seized tends to be central. It is well known that corporate lending in Japan historically focused on hard assets, and real estate is especially popular (Gan, 2007; Peek and Rosengren, 2000; Tan, 2004). Rajan and Zingales (1995) also find that tangible assets have a significantly higher impact on firm leverage in Japan compared to other G-7 countries. In Sections 3 and 4, we contrast our findings in the US with results in Japan, which further illustrates the impact of different forms of corporate borrowing constraints.

In the above, we document the prevalence of cash flow-based lending and EBCs among US non-financial firms, based on debt contract data. In the following, we further examine the impact of these characteristics of corporate borrowing on the margin. Specifically, we study how they shape the way financial variables affect firms on the margin. Section 3 studies how they affect the role of cash flows in corporate borrowing and investment. Section 4 studies the mirror image: how they affect the sensitivity of corporate borrowing and investment to the value of physical assets, in particular real estate, and implications for the Great Recession. The results attest to the contract-level evidence. For US non-financial firms, with the prevalence of cash flow-based lending, cash flows in the form of operating earnings can be important for borrowing constraints and firm outcomes, while the value of physical assets has a mild influence. We also contrast the US with Japan, where asset-based lending dominates. We finally discuss additional macro implications in Section 5.

16 For example, automatic stay prevents creditors from seizing collateral and prevents potentially disruptive debt collection activities. Firms can also obtain additional high priority debt (DIP financing) to support continued operations and ameliorate debt overhang problems.

17 In the US, the share of unsecured corporate debt, as one indicator for the prevalence of cash flow-based lending, is fairly high, at around 50%. The figure is about 30% in the UK. It is less than 20% for Germany, France, and EU average, and similarly low for Japan.
3 Cash Flows, Corporate Borrowing, and Investment

In this section, we study how cash flow-based lending and EBCs shape the way cash flows affect corporate borrowing and investment on the margin.

In the presence of EBCs, cash flows in the form of operating earnings (EBITDA) can directly relax borrowing constraints, and enable firms to both borrow and invest more, as further discussed in Section 3.1. This mechanism is not present among firms not bound by EBCs, such as unconstrained firms and various firm groups with low presence of cash flow-based lending (e.g., small firms, low margin firms, airlines etc., Japanese firms). Results in the data indicate the impact of EBCs on the margin, and shed further light on the way cash flows affect firm outcomes.

3.1 Mechanisms

We first provide a simple framework to clarify the channels through which cash flows can affect firm outcomes, in the case with cash flow-based lending and EBCs. The framework is based on the standard set-up for studying firms’ investment sensitivity to cash flows (Froot, Scharfstein, and Stein, 1993; Kaplan and Zingales, 1997). This literature traditionally focuses on the pecking order mechanisms (Myers and Majluf, 1984), and the main function of cash flows is to increase internal funds. EBCs introduce a new channel: cash flows in the form of operating earnings (EBITDA) can directly relax borrowing constraints and facilitate investment. The response of borrowing and investment to cash flows does not just reflect the role of internal funds.

Consider a firm that makes investment decisions I and maximizes profits. The investment payoff is $F(I)$, with $F' > 0$ and $F'' \leq 0$. Investment can be financed with internal funds w or external borrowing b. The discount rate on investment is 1 for simplicity. External borrowing incurs additional costs, due to frictions in capital markets. With EBCs a key feature is that a firm’s capacity and effective costs of borrowing depends on cash flows in the form of current EBITDA, denoted by π. We can summarize the additional costs as $C(b, \pi)$, which is convex in b. We assume $C_{br}(b, \pi) \leq 0, \forall b, \pi$, which means that an increase in EBITDA decreases the marginal cost of borrowing for any given level of b. One specific form of $C(b, \pi)$ corresponding to earnings-based covenant $b \leq \theta \pi$ is $C(b, \pi) = 0$ when $b \leq \theta \pi$.

18 As a concrete example, US non-financial firms routinely discuss their primary financing constraints in their filings. These discussions indicate that major US non-financial firms still face borrowing constraints, but the primary constraint could be different from the commonly studied collateral constraint and instead focus on earnings. For instance, in its 2012 10-K filing, Coty Inc (one of the largest global beauty product producers) writes: “We remain dependent upon others for our financing needs, and our debt agreements contain restrictive covenants...[F]inancial covenants...require us to maintain, at the end of each fiscal quarter, a consolidated leverage ratio of consolidated total debt to consolidated EBITDA.”
and \(C(b, \pi) = +\infty \) when \(b > \theta \pi \). We use a more general specification of \(C \) to capture that the costs of external borrowing could increase as the firm approaches the constraint.

The firm’s optimization problem is

\[
(I^*, b^*) = \arg \max_{I, b \geq 0} F(I) - C(b; \pi) - I
\]

\(s.t. \ I = w + b. \)

In this case, we get the following predictions about the influence of cash flow variables on corporate borrowing and investment.

Proposition 1. Suppose \(F'(w) > C_b(0, \pi) \), that is, the optimal external borrowing \(b^* > 0 \) (an internal solution).

Prediction 1: All else equal, EBITDA relaxes EBCs and crowds in borrowing and investment.

For a given amount of internal funds \(w \), borrowing and investment are weakly increasing in EBITDA \(\frac{\partial b^*}{\partial \pi} |_{w} \geq 0 \) and \(\frac{\partial I^*}{\partial \pi} |_{w} \geq 0 \).

Prediction 2: Holding EBITDA constant, higher internal funds crowd in investment but substitute out borrowing.

For a given amount of EBITDA \(\pi \), investment is strictly increasing in internal funds \(\frac{\partial I^*}{\partial w} |_{\pi} > 0 \), but borrowing is weakly decreasing in internal funds: \(\frac{\partial b^*}{\partial w} |_{\pi} \leq 0 \) (the inequality holds strictly if the production function \(F \) is strictly concave).

In the presence of EBCs, an increase in EBITDA \(\pi \) relaxes borrowing constraints and decreases the effective costs of borrowing, all else equal. Thus this type of cash flows helps crowd in corporate borrowing. Meanwhile, holding EBITDA constant, higher internal funds may substitute out borrowing. This substitution between internal funds and external financing is reminiscent of the pecking order framework (Myers and Majluf, 1984; Froot, Scharfstein, and Stein, 1993; Kaplan and Zingales, 1997).

Without controlling for internal funds, the

\[^{19} \text{For example, in a dynamic setting, even if EBCs do not bind in the current period, more borrowing may increase the probability of violating EBCs in the next period, which adds to the effective cost of external borrowing \(C \).} \]

\[^{20} \text{In the corporate finance literature on investment cash flow sensitivity, the traditional framework (Froot, Scharfstein, and Stein, 1993) specifies the cost of external financing as \(C(b) \), a convex function of the amount of borrowing. For a given amount of borrowing, financial variables, e.g. cash flows and physical collateral, do not have an independent impact on \(C \). In this case, the role of cash flows is to increase internal funds (but do not relax borrowing constraints). Accordingly, they boost investment but decrease external borrowing: as the firm expands investment using cheaper internal funds, the marginal product of investment drops as long as \(F(I) \) is concave, and the firm would reduce costly external financing so the marginal cost of investment decreases accordingly. Here controlling for internal funds, EBITDA does not have an independent role; without controlling for internal funds, EBITDA would be negatively correlated with borrowing. We provide a detailed summary of the effect of cash flows in this framework and in classic macro-finance models (Kiyotaki and Moore, 1997; Bernanke et al., 1999; Holmstrom and Tirole, 1997) in Supplementary Appendix Section IA3.} \]
total impact of an increase in EBITDA π would have two components: the effect on external borrowing and the effect on internal funds:

$$\frac{db^*}{d\pi} = \frac{\partial b^*}{\partial \pi} + \frac{\partial b^*}{\partial w} \frac{dw}{d\pi} \quad \text{and} \quad \frac{dI^*}{d\pi} = \frac{\partial I^*}{\partial \pi} + \frac{\partial I^*}{\partial w} \frac{dw}{d\pi}. \quad (4)$$

To the extent that π and w are positively correlated, the two effects work in different directions for borrowing, and work in the same direction for investment.

In the above, we use a simple one-period setting for illustration. In a multi-period setting, we can interpret b as net debt issuance in a particular period. The cost of external borrowing in that period is then $C(b + b^{old}, \pi)$, where b^{old} is the firm’s existing debt, b is (net) debt issuance, and $b + b^{old}$ is total debt. Then the results in Proposition 1 apply to b conditioning on b^{old}. In the empirical tests below, we thus focus on outcome variables in flows (i.e. debt issuance and investment, always controlling for lagged debt in levels b^{old}), which also lines up most closely with prior research.

In the rest of this section, we empirically investigate how cash flows in the form of operating earnings affect firms’ borrowing and investment on the margin. We focus on the borrowing constraint channel, and differentiate it from the internal funds channel.

3.2 Baseline Tests

We start with standard investment regression specifications. We explain the set-up, lay out the findings, and address possible concerns. In Section 3.3, we further study exogenous variations in operating earnings due to an accounting natural experiment.

3.2.1 Specification

We follow the specification of standard investment regressions (Fazzari, Hubbard, and Petersen, 1988; Hoshi, Kashyap, and Scharfstein, 1991; Kaplan and Zingales, 1997) and perform annual regressions:

$$Y_{it} = \alpha_i + \eta_t + \lambda EBITDA_{it} + X_{it}^\prime \xi + \epsilon_{it}$$

$$Y_{it} = \alpha_i + \eta_t + \beta EBITDA_{it} + \kappa OCF_{it} + X_{it}^\prime \gamma + \epsilon_{it} \quad \text{(5)}$$

We make several modifications to the traditional set-up, as we explain below.

Outcome variables. For the outcome variables, prior research typically focuses on investment. We start instead with borrowing, which is key to understanding the mechanisms; we then proceed to the impact on investment activities. The main variable we use is net long-term debt issuance from the statement of cash flows, defined as issuance minus reduction of
long-term debt (Compustat item DLTIS - DLTR), normalized by lagged assets. We focus on long-term debt because it is most closely tied to investment activities. We also present results for several other debt issuance variables, including changes in total book debt, and changes in both secured debt and unsecured debt (using additional data from CapitalIQ). Since EBCs apply at the firm level, all types of debt may be affected. For investment activities, we examine capital expenditures (spending on plant, property, and equipment) as well as R&D spending, normalized by lagged assets.

Independent variables. The main independent variable of interest is operating earnings (EBITDA), which directly affect EBCs. We use the Compustat variable EBITDA, normalized by lagged assets. We start with the first line in Equation (5), which includes EBITDA and controls. This specification follows standard investment regressions which have one central cash flow variable, usually measured using earnings (e.g. income before extraordinary items plus depreciation and amortization or EBITDA). Here the EBITDA coefficient \(\lambda \) picks up both the impact through relaxing EBCs, and the impact through increasing cash receipts/internal funds.

To isolate the impact of EBITDA through borrowing constraints, we then control for measures of internal funds. We control for net cash receipts OCF, measured using Compustat variable OANCF (adding back interest expenses XINT to prevent mechanical correlation with debt issuance) normalized by lagged assets. Net cash receipts OCF captures the actual amount of cash a firm gets from its operations (it does not include cash receipts/outsays due to financing or investment activities). For a firm over time, EBITDA and OCF are about 0.6 correlated. These two variables are different for several reasons. First, there are timing differences between earnings recognition (when goods/services are provided to customers) and cash payments (which can be before, during, or after earnings recognition). Second, OCF includes net cash receipts due to non-operating income, special items, and taxes, which may not count towards EBITDA. Third, accounting rules may stipulate additional exclusions or inclusions in earnings. Appendix C provides a detailed discussion of the definitions of EBITDA and OCF and their relationships. We also control for cash holdings (Compustat CHE, which includes holdings of cash and short-term/liquid financial securities, normalized by assets) at the beginning of period \(t \).

Other control variables include average \(Q \) (market value over book value of assets, Compustat DLC + DLTT + stock price times shares outstanding from CRSP over Compustat AT) and past 12 months stock returns that some work found to be a useful empirical proxy for \(Q \) (Barro, 1990; Lamont, 2000). We also control book leverage (total debt over assets) and other balance sheet characteristics (e.g. tangible assets such as book PPE and inven-

21The Compustat EBITDA variable is defined as sales minus operating expenses (Cost of Goods Sold plus Selling, General & Administrative Expense). The specific definitions of EBITDA may vary slightly in different debt contracts, but share the core component captured by the Compustat variable.
tory), measured at the beginning of period t. Finally, we control for size (log assets) and lagged EBITDA to focus on the impact of current EBITDA. We use firm fixed effects and year fixed effects in our baseline specifications. Supplementary Appendix Table IA2 shows specifications with industry-year fixed effects. Table IA3 shows specifications using lagged dependent variables instead of firm fixed effects. The results are similar.

As discussed at the end of Section 3.1, we focus on outcome variables in flows (i.e. debt issuance and investment), which lines up most closely with prior research. In particular, as we always control for lagged debt b_{old} (i.e. lagged leverage: lagged debt b_{old} normalized by lagged assets which is the common denominator in regression (5)), using debt issuance b on the left-hand side is equivalent to using total debt $b + b_{old}$, in terms of coefficients on the independent variables (except the coefficient on b_{old} changes by one).

Samples. We start with firms where EBCs are most relevant. We first examine large firms with earnings-based covenants, which provide a clear indication of the presence of such constraints. We use covenant information from DealScan and FISD, as described in Section 2.2. Table 3 Panel A provides summary statistics of these firms. They have high earnings, with a median EBITDA to assets ratio of 0.13, and primarily use cash flow-based lending (median is 88%). They also have a reasonable amount of debt, so the constraint becomes relevant: the median debt to EBITDA ratio is 2.2 (typical constraint is maximum debt to EBITDA around 3 to 4), and the median debt to assets ratio is 0.3.

We then examine several firm groups where EBCs are less relevant. First, we analyze large firms without earnings-based covenants. These firms use cash flow-based lending (median share is 88%), but have a low level of debt and are far from the constraint. Second, we analyze a number of firm groups that rely on asset-based lending, where cash flow variables are not key determinants of borrowing constraints. As explained in 2.3, several distinct factors affect the prevalence of asset-based vs. cash flow-based lending, including size, profitability, asset specificity, and legal environments. Correspondingly, we study small firms, low margin firms, airlines and utilities, and Japanese firms (later in Section 3.4), where asset-based lending dominates. Table 3 Panel B presents summary statistics of the comparison groups. These firms display rich heterogeneity size, profitability, leverage, asset composition, etc.

Comparing firms with primarily cash flow-based lending vs. asset-based lending provides further evidence on the main mechanism of interest: when cash flow-based lending prevails, EBCs are important and cash flows in the form of operating earnings can relax borrowing constraints on the margin and influence firms outcomes. The comparison also helps us address alternative explanations of the results in benchmark tests. As we discuss in more detail in Section 3.2.3, although the comparison firms are not assigned randomly, it appears hard to account for the different impact of EBITDA across all these comparison groups based on common alternative explanations.
Our main sample covers 1996 to 2015, since data on financial covenants were sparse prior to 1996. We can also examine comparisons of firm groups (e.g. large vs. small firms, high vs. low profitability firms, airlines etc.) using a longer sample since 1985 (when statement of cash flow variables became systematically available in Compustat), which we show in Supplementary Appendix Section IA5.1 Table IA4.

3.2.2 Results

Table 4 reports the results of the baseline regressions for large firms with EBCs.

Debt Issuance

Table 4 Panel A presents results on debt issuance. Columns (1) and (2) look at our main debt issuance measure, net long-term debt issuance (from the statement of cash flows). Column (1) follows the first line of Equation (5) and includes EBITDA alone. In this case, for a one dollar increase in EBITDA, net long-term debt issuance increases by 21 cents on average. As Section 3.1 Equation (4) suggests, the EBITDA coefficient here captures two components: EBITDA’s impact through relaxing EBCs and EBITDA’s correlation with changes in internal funds \((\frac{\partial b^*}{\partial \pi} = \frac{\partial b^*}{\partial w} \frac{dw}{d\pi})\). To the extent that higher internal funds may substitute out external borrowing \((\frac{\partial b^*}{\partial w} < 0)\), the coefficient in Column (1) would underestimate EBITDA’s impact through relaxing EBCs. In Column (2), we control for net cash receipts OCF. In this case, for a one dollar increase in EBITDA, net long-term debt issuance increases by 27 cents on average.

The magnitude of this effect is large. As a comparison, for instance, Chaney, Sraer, and Thesmar (2012) find that for a one dollar increase in firms’ property value, net long-term debt issuance increases by about 4 cents. The sensitivity of 27 cents on a dollar is still lower than a typical maximum debt-to-earnings constraint of around 4, as most firms are not exactly at the constraint. As discussed in Section 3.1, in such cases the sensitivity of debt issuance to earnings would be less than what is specified by the constraint.

Results on the impact of EBITDA are similar using other measures of debt issuance. The response to EBITDA is 41 cents when the outcome variable is changes in book debt, holding constant OCF. Columns (5) to (8) show that secured debt and unsecured debt both respond: issuance of secured debt increases by 13 cents for a one dollar increase in EBITDA, and that of unsecured debt increases by 23 cents (the sample here is restricted to firms with debt data from CapitalIQ). The magnitudes of these two coefficients are roughly proportional to the share of secured to unsecured debt among this sample (40% secured and 60% unsecured for the median firm). The results suggest that EBITDA, by relaxing firm-level EBCs, expands the capacity for all types of debt.

Holding EBITDA constant, we find that firms with higher net cash receipts OCF borrow less: when OCF is higher by one dollar, net long-term debt issuance on average decreases by
11 cents. Other measures of debt issuance also show reductions in borrowing. The results suggest that holding fixed the tightness of EBCs, more internal funds do substitute out external borrowing on average.22 The evidence is consistent with findings by Rauh (2006), who studies a shock (due to mandatory contributions to employee pension plans) that affects a firm’s cash positions but does not affect its earnings. He finds that firms with higher cash positions (lower mandatory pension contributions) have lower net debt issuance.

Investment Activities

Table 4 Panel B turns to investment activities. In column (1), without controlling for OCF, a one dollar increase in EBITDA is on average associated with a 13 cents increase in capital expenditures. The magnitude is in line with findings in recent studies (Baker, Stein, and Wurgler, 2003; Rauh, 2006), which usually measures cash flows using earnings (e.g. income before extraordinary items plus depreciation and amortization). Again, following Section 3.1 Equation (4), the EBITDA coefficient has two components: EBITDA’s impact through relaxing EBCs and EBITDA’s correlation with changes in internal funds ($\frac{dI^*}{d\pi} = \frac{\partial I^*}{\partial \pi} + \frac{\partial I^*}{\partial w} \frac{dw}{d\pi}$). We decompose these two pieces in column (2) by controlling for OCF. We find a coefficient on EBITDA of 10 cents on average, while the coefficient on OCF is about 5 cents on average.23 Among firms bound by EBCs, the effect of the borrowing constraint channel appears as important as the internal funds channel, if not larger.

In addition to traditional capital expenditures, we also examine the impact on R&D spending. We find a positive correlation between EBITDA and R&D expenditures. R&D expenses, unlike CAPX, are required to be included in operating expenses, which would produce a negative link between R&D and EBITDA. Despite this negative link, in this sample of firms bound by EBCs, increases in EBITDA can crowd in R&D spending (and these expenditures do not fully offset the initial increase in EBITDA). This pattern is unique to firms with EBCs.24

Firm Groups with Low Prevalence of EBCs

In Table 5, we study four groups of firms where EBCs are less relevant, as explained in Section 3.2.1: 1) large firms without EBCs, which use cash flow-based lending but are far

22Given accounting practices, net cash receipts from operations (OCF) are affected by inventory purchases: all else equal, a firm that buys more inventory has a lower OCF. It is possible that such a firm also needs to borrow more, which may lead to a negative relationship between OCF and debt issuance. In Supplementary Appendix Table IA5, we present results controlling for inventory purchase, which show similar findings.

23The coefficients represent the magnitude of the average response, not necessarily that of the conditional response. For example, suppose the constraints are binding 10% of the time and firms are unconstrained 90% of the time (where investment is close to first best). Then in the 10% constrained cases, the response to EBITDA and OCF would be ten times the size of the average response.

24We also analyze the response of cash holdings and other outcomes. Controlling for OCF, cash holdings on average increase by about 1 cent for a one dollar increase in EBITDA; they increase by 40 cents for a one dollar increase in OCF. Thus most of the association between EBITDA and cash holdings documented by Almeida, Campello, and Weisbach (2004) comes from the correlation between EBITDA and net cash receipts, not from EBITDA’s role in relaxing borrowing constraints. A one dollar increase in EBITDA is also on average associated with a 4 cents increase in payout and a 15 cents increase in acquisitions.
from the constraints; 2) small firms, which are constrained but have limited cash flow-based lending; 3) low margin firms, where cash flow-based lending is similarly less prevalent; 4) airlines and utilities, which utilize asset-based lending given their asset attributes. We also examine Japanese firms in Section 3.4.

Across all these comparison groups, EBITDA does not have a significant impact on debt issuance. For all groups, the coefficient on EBITDA is negative and significant without controlling for net cash receipts OCF. This contrasts sharply with the results among firms bound by EBCs shown in Table 4. Table 4 Panel A shows that, after controlling for OCF, the EBITDA coefficient is about zero. Figure 5 visualizes the different impact of EBITDA on debt issuance across different firm groups. Table 4 Panel B shows that EBITDA also does not have an independent positive impact on capital expenditures once we control for OCF.

Among these firms, the impact of OCF is overall similar to that among firms with EBCs. OCF substitutes out borrowing in all cases. It has a positive impact on investment, which is more pronounced among capital intensive firms (e.g. airlines and utilities) and weaker among capital light firms (e.g. small firms).

3.2.3 Checks for Alternative Explanations

Results in the baseline tests line up with predictions in Section 3.1. In the following, we discuss potential alternative explanations and provide empirical checks. These alternative explanations also cannot account for findings from a natural experiment we study in Section 3.3 due to changes in accounting rules.

Mismeasurement of Marginal Q

A central empirical issue in testing responses to cash flow variables is whether these variables are proxying for Q, due to mismeasurement of marginal Q. Specifically, firms may increase borrowing and investment because of good investment opportunities and high marginal Q. Measured Q, however, could be imprecise, which induces an omitted variable problem; coefficients on EBITDA and other cash flow variables may be biased upward if these variables are positively correlated with the omitted variable, namely marginal Q.

We do not find that mismeasurement of Q easily accounts for our results. First, in Section 3.2.2, we show that the positive relationship between EBITDA and borrowing and investment does not exist among various groups of firms that are not bound by EBCs. For mismeasurement of Q to explain these findings, it needs to be that Q is less mismeasured or EBITDA is less informative across all these comparison groups, which does not appear to be the case in the data. In the Supplementary Appendix Section IA5.2, we perform detailed tests to study the informativeness of EBITDA and Q across all firm groups, including tests of accounting quality (e.g. net operating assets (Hirshleifer et al., 2004), accrual quality (Dechow and Dichev, 2002; Francis et al., 2005), loss avoidance (Bhattacharya et al., 2003),
etc.), as well as predictive regressions of future earnings and cash receipts. Figure 6 shows an example of predicting future EBITDA using current EBITDA and \(Q \), across different firm groups; Table IA8 performs more analyses. We do not find evidence that EBITDA is less informative or \(Q \) is less mismeasured in comparison groups. Indeed, EBITDA is equally or more informative (e.g. more predictive of future profitability and cash receipts), and \(Q \) sometimes more mismeasured (e.g. less predictive of future profitability and cash receipts) among comparison groups.

Second, if EBITDA simply proxies for \(Q \) and corresponding demand for external financing, we may also expect to see impact on other types of financing activities. Thus we also study the response of net equity issuance to EBITDA. While net debt issuance increases significantly with EBITDA among firms with EBCs, we do not observe such a relationship for net equity issuance. Thus it does not appear that firms have a higher demand for external financing in general with an increase in EBITDA.

Collateral Value

We also check that the sensitivity of borrowing and investment to EBITDA is not driven by omitted variable problems related to physical collateral, i.e. EBITDA being correlated with the value of physical collateral. In particular, we look at the issuance of unsecured debt, which is unlikely to be affected by the collateral channel. Previous research and our analysis in Appendix A confirm that this type of borrowing does not respond to the value of physical assets. On the other hand, since EBCs restrict total debt of the firm, EBITDA can affect all types of debt (including unsecured debt). As we find in Table 4 Panel A, the issuance of unsecured debt responds significantly to EBITDA for firms bound by EBCs. We can also directly control for measures of collateral value, such as the value of real estate assets, which does not affect the coefficient on EBITDA, as shown in Supplementary Appendix Table IA6. We also examine the effect of property collateral value on corporate borrowing and investment in more detail in Section 4. In sum, the evidence suggests that EBITDA has an important impact on corporate borrowing that is separate from the collateral value channel.

Finally, another possible concern is that EBCs are not randomly assigned, which can be relevant for sample comparison analyses. This issue matters if the prevalence of EBCs is correlated with the severity of omitted variable problems. As discussed above, for mismeasurement of \(Q \), we do not find that the problem is more severe among firms with higher prevalence of EBCs. For collateral value, in the analysis above we do not find it to be an important omitted variable problem in any firm group, based on tests with unsecured debt as the outcome variable and tests directly controlling for measures of collateral value.
3.3 Exogenous Variations in Operating Earnings: An Accounting Natural Experiment

We supplement the tests above and further study the impact of EBITDA using a natural experiment due to an accounting rule change. The accounting rule modifies the calculation of earnings, and contributes to changes in EBITDA that are not related to changes in economic fundamentals or internal funds. As a result, it helps us further isolate the impact of EBITDA due to earnings-based borrowing constraints.

The accounting rule change we study is SFAS 123(r) issued by the Financial Accounting Standard Board (FASB) regarding the accounting of stock-based compensation. Before the adoption of this rule, firms’ option compensation expenses do not formally count towards operating expenses, a component of operating earnings. Instead, firms make footnote disclosures at the end of their financial statements. The new rule requires firms to include option compensation expenses in operating expenses, thus they would affect operating earnings. As a result, the new rule can decrease EBITDA for firms that use option compensation, but does not have a direct impact on cash positions or company fundamentals.\(^{25}\) A number of studies show that contracting frictions make it hard to neutralize changes in accounting rules, and they tend to have a significant impact on firms’ financial and real decisions due to debt contracting and covenant restrictions (Brown and Lee, 2007; Frankel et al., 2010; Moser et al., 2011; Cohen et al., 2012; Shroff, 2017).\(^{26}\) SFAS 123(r) is most relevant to our study, as it directly relates to the calculation of operating earnings. The rule is issued in December 2004; it becomes effective for public companies for accounting periods that began after June 15, 2005, and fiscal 2006 is the first fiscal year affected by the new rule.

We study the impact of the rule change in Table 6. We instrument EBITDA in 2006 (post-adoption) with the average option compensation expenses in the three years prior to the issuance of SFAS 123(r) in 2004, controlling for lags of EBITDA, lags of the dependent variable, as well as a set of firm characteristics (including the same controls as in Tables 4,

\(^{25}\)SFAS 123(r) requires firms to record an expense when options are granted, based on its Black-Scholes value. It also requires firms to recognize an expense for previously granted options that vest after the adoption date of SFAS 123(r).

\(^{26}\)There are two issues about EBITDA definitions in debt contracts that we need to examine. The first issue is whether covenants calculate EBITDA using fixed accounting methods (“fixed GAAP,” in which case accounting changes do not affect covenant tightness), or latest accounting methods (“floating GAAP,” in which case accounting changes do matter). Reviews of sample contracts show that “floating GAAP” is common (Moser et al., 2011; Shroff, 2017), given transaction costs for applying “fixed GAAP” (firms’ official financial statements comply with latest accounting methods, thus to implement “fixed GAAP” the borrower needs to prepare an additional set of financial statements); thus the accounting rule change would directly affect constraint tightness. The second issue is certain debt contracts allow borrowers to exclude all expenses with no cash impact (“non-cash charges,” such as depreciation, amortization, stock-based compensation, etc.) from the calculation of EBITDA, in which case SFAS 123(r) may not affect covenant tightness (since stock-based compensation is excluded). We read a set of publicly available debt contracts during this period, and do not find such exclusions to be pervasive.
book-to-market ratio, and longer lags of firm stock returns). We also control for sales and OCF given that the accounting rule change affects EBITDA through operating expenses, not sales or net cash receipts.

\[Y_{i}^{2006} = \alpha + \beta \text{EBITDA}_{i}^{2006} + X_{i}'\gamma + \epsilon_{i} \]

We study both net long-term debt issuance and capital expenditures as the outcome variable. We present results for large firms bound by EBCs, large firms without EBCs, and small firms.

Table 6 Panel A shows strong first-stage responses among all firms. Panel B shows the second stage: debt issuance and investment are significantly affected among firms with EBCs, but not among other firm groups. The results are consistent with our findings above that, in the presence of EBCs, EBITDA has a key impact on firms’ borrowing and investment by affecting the tightness of their borrowing constraints. In Table 6, the second stage coefficients on EBITDA among firms with EBCs are higher than the baseline results in Table 4. The estimates here are local average treatment effect (LATE), and it appears that firms which are most intensively treated (those that use a significant amount of option compensation) are more responsive. In addition, the accounting rule change induces a nearly permanent shock to earnings (the new rule permanently eliminates one way of compensating employees without booking an operating expense, while the average persistence of innovations in EBITDA in our baseline tests is about 0.3), which could make the effect size larger. In the Supplementary Appendix Section 1A5.3, we perform placebo tests using other years, and verify that there are no first-stage and reduced form results in these cases.

3.4 Additional Discussion

Are Financially More Constrained Firms More Sensitive to “Cash Flows”? By studying borrowing constraints, our observation also suggests a new channel for the widely studied issue of investment sensitivity to cash flows (Fazzari, Hubbard, and Petersen, 1988; Froot, Scharfstein, and Stein, 1993; Kaplan and Zingales, 1997; Blanchard, Lopez-de Silanes, and Shleifer, 1994; Rauh, 2006). With EBCs, cash flows in the form of operating earnings (EBITDA) can facilitate investment by directly relaxing borrowing constraints. Investment sensitivity of cash flows may not just reflect the role of internal funds and pecking order mechanisms (Myers and Majluf, 1984); it may also arise from earnings-based borrowing.

27 The exclusion restriction here is the following: among firms bound by EBCs in particular, prior option compensation expenses do not affect subsequent borrowing and investment through channels other than EBCs. To account for our results using alternative explanations, it has to be that there are certain links between prior option compensation and subsequent changes in borrowing and investment which are unique to firms bound by EBCs but are not related to EBCs. We do not find a strong reason for such channels.

28 A special case is fiscal year 2005, which is after the rule issuance but before its implementation. In this year, we find some impact on debt issuance and a modestly significant impact on investment among firms bound by EBCs. This could result from preemptive adjustments smoothing out the impact of the new rule.
constraints, especially when “cash flows” are measured based on earnings as in most studies.

In addition, this observation also provides a new perspective for the debate about whether investment cash flow sensitivity should be higher among more financially constrained firms (Fazzari, Hubbard, and Petersen, 1988, 2000; Kaplan and Zingales, 1997, 2000). In previous research, the key to this debate is whether financially more constrained firms are more sensitive to internal funds. However, as discussed above, for firms bound by EBCs, cash flow sensitivity may also arise through borrowing constraints. This second channel is largely absent, for instance, among small firms (and low profitability firms), where cash flow-based lending and EBCs are much less prevalent, as we show in Supplementary Appendix Table IA1. While consensus measures of financial constraint are also subject to debate (Farre-Mensa and Ljungqvist, 2016), small firms are plausibly more constrained than large firms (so are low profitability firms). Thus, for some of the reasonably more constrained firms, there is one less channel of cash flow sensitivity, which could contribute to empirical findings that more “financially constrained” firms may not display higher cash flow sensitivity (especially when cash flows are measured based on earnings).

US vs. Japan. We also contrast the US with Japan, where corporate borrowing historically relies on physical collateral, especially real estate. While cash flows in the form of operating earnings have a significant impact on debt issuance and investment among large US firms, this relationship does not hold among Japanese firms.

Table 7 reruns the baseline regressions among large non-financial firms (i.e. assets above median among Compustat firms in the respective country) in the US and in Japan. A majority of firms in the US large firm sample have EBCs, as shown in Section 2.2, while cash flow-based lending and EBCs are less common in Japan (Tan, 2004). Table 7 Panel A first tabulates the summary statistics for the US and Japan samples. For Japanese firms, we use data from Compustat Global, supplemented with stock price information from Datastream. Net long-term debt issuance from the statement of cash flows is not available for the Japan sample, so we measure debt issuance here using changes in total book debt. Capital expenditures and net cash receipts (OCF) in Compustat Global are also available for a smaller set of firms in the Japan sample before 2000, and we fill in the gap using additional data from WorldScope. Firms in the US and Japan samples are similar in size as measured by assets. US firms have higher EBITDA relative to assets, as well as higher equity valuations. US firms have higher debt relative to assets, and Japanese firms have higher debt relative to EBITDA (as Japanese firms are not bound by debt to EBITDA constraints).

Table 7 Panel B performs the baseline regressions in the US and Japan samples. There is a strong positive relationship between debt issuance and EBITDA in the US sample (driven by firms bound by EBCs), which is absent in the Japan sample. As shown by Panel B column (3), in the Japan sample, debt issuance decreases with EBITDA when not controlling for
net cash receipts OCF. Once we control for OCF in column (4), the EBITDA coefficient becomes close to zero and OCF has a significantly negative coefficient. Similarly, EBITDA does not have an independent impact on investment in the Japan sample.

Borrowing Constraints and Cash Flow Value. In this section, we have focused on the role of current operating earnings (EBITDA) in relaxing borrowing constraints and helping firms to borrow and invest more. Given contracting frictions discussed in Section 2.2, cash flows in the form of current EBITDA are central to commonly used, legally binding borrowing constraints (EBCs), and exhibit a disproportionate impact. While current EBITDA is an important factor and an anchor for EBCs, other cash flow measures such as expected present value of future cash flows may also play a role. For instance, a firm with high future cash flow prospects may be able to get a larger loan relative to its current EBITDA, and a higher debt to EBITDA multiple for its covenant constraints. We focus on the effect of current EBITDA as an illustration of the central role of cash flow value in corporate borrowing in the US, both because it has a disproportionate impact due to contracting frictions, and because it is directly observable in the data (the present value of future cash flows, on the other hand, is hard to empirically measure; it is also empirically hardly separable from investment opportunities).

In summary, results in this section attest to the impact of EBCs for firms’ financial and real outcomes on the margin, when cash flow-based lending prevails and EBCs apply. The findings also point to new perspectives on the role of cash flows for firm outcomes, and how it can be shaped by corporate borrowing practices.

4 **Property Prices, Firm Outcomes, and Financial Acceleration**

In this section, we study the mirror image of Section 3: when cash flow-based lending and EBCs prevail, how the value of physical assets, in particular real estate, influences firm outcomes on the margin. The analysis also helps illuminate the transmission of financial shocks during the Great Recession.

Specifically, as corporate borrowing does not rely heavily on physical assets, major US firms’ sensitivity to collateral value, such as the value of real estate, can be diminished. We first examine the general sensitivity of US firms’ borrowing to property collateral value. We find that a positive sensitivity is only present among asset-based debt, and is absent among cash flow-based debt. Thus the overall sensitivity to real estate value appears modest. We then apply this observation to the Great Recession. Among major US non-financial firms, we do not find that collateral damage due to property price drops contributes significantly
to declines in borrowing and investment during the crisis. We finally contrast the US with Japan, which suggests the transmission of property price shocks can differ substantially, depending on the predominant form of corporate borrowing.

4.1 Property Value and Corporate Borrowing

We first investigate the general sensitivity of corporate borrowing to real estate value, and the role of asset-based lending vs. cash flow-based lending.

We follow the empirical specifications in prior research (Chaney, Sraer, and Thesmar, 2012; Cvijanović, 2014):

\[Y_{it} = \alpha_i + \eta_t + \beta R E_{it} + X'_{it} \gamma + \epsilon_{it} \tag{7} \]

For the outcome variable, we study both net debt issuance as in previous work, and the issuance of cash flow-based vs. asset-based debt.

Since we only have detailed firm-level categorization of cash flow-based and asset-based debt starting in 2002, we focus on the sample period of 2003 to 2015; the results for overall net debt issuance are similar in a longer sample. The main independent variable \(R E_{it} \) is the market value of real estate assets, measured at the beginning of year \(t \) using two procedures described in detail below. We control for firms’ operating earnings (EBITDA), net cash receipts (OCF), cash holdings, \(Q \), and additional balance sheet characteristics such as book leverage, size (log assets), other tangible assets (measured at the beginning of year \(t \)).

A standard empirical concern in testing responses to property value is that property prices might be correlated with local demand in firms’ locations. To address this problem, we draw on Mian and Sufi (2014)’s observation that tradable firms’ demand is national (or global), and not systematically exposed to local demand in their locations. Accordingly, we present additional results for tradable firms only to further tease out potential impact of local demand. Another approach is to instrument property prices with land supply elasticity (Saiz, 2010), as in Chaney, Sraer, and Thesmar (2012). However, as Mian and Sufi (2014) demonstrate, land supply elasticity is a strong instrument for household housing net worth and household demand, and therefore correlated with local demand. As a result, this instrument may not satisfy the exclusion restriction in our setting.

Measuring Firms’ Real Estate Value

Firms’ financial statements report the book value of property (based on historical cost) rather than the market value. We estimate the market value in two ways.

Method 1: Traditional Estimates. Chaney, Sraer, and Thesmar (2012) provide a standard procedure to estimate the market value of real estate using accounting data. The estimate is calculated based on the book value of real estate, accumulated depreciation, and historical property value in the firm’s headquarters location. Because accumulated deprecia-
tion on real estate assets is no longer reported after 1993, this procedure requires firms to be exist in Compustat since 1993, which restricts the sample size. The key assumption in this estimate is that most of the real estate firms own are located near their headquarters, which is plausible as we discuss in more detail below (most firms’ owned properties, such as offices and main production facilities, tend to concentrate in the headquarters region). Appendix D explains the construction of our estimates by step.

Table 8 presents the characteristics of this sample. Given the data requirement of this method, the sample tilts towards large firms (70%). 56% of the sample have earnings-based covenants. Median market value of real estate normalized by book assets is 0.20; median market value of real estate relative to the market value of equity 0.20, very similar to Chaney, Sraer, and Thesmar (2012). Table 8 also shows the characteristics of all Compustat firms that own real estate (around 66% of Compustat firms own some real estate), measured during the same period. In comparison, firms in the Method 1 sample are slightly larger in size, but generally similar in terms of the amount of book PPE, profitability and book leverage.

Method 2: Property Ownership Information from 10-K filings. US non-financial firms are required to discuss their physical properties in annual reports (10-K filings). About one third of firms with real estate provide a detailed list of their owned properties, including location, property type, and square footage. We hand collect these data from 2006 filings to get more refined information about firms’ property holdings. For the panel analysis in this section, we assume firms own a fixed set of properties as shown by 2006 filings, estimate the market value of each property in each year, and sum up to the firm level. We also read filings in 2002, which produce similar results (estimates using locations in 2002 and 2006 filings are about 0.85 correlated). For the cross-sectional analysis in Section 4.2 focusing on the crisis period, we directly take the properties owned by the end of 2006 reported in the 2006 filings, and calculate the change in their values through the crisis. We restrict to owned real estate located in the US, and keep firms that have information for substantially all owned properties in the US. Appendix D provides examples of property holding information from 10-K filings, and detailed explanations of variable construction.

The market value of real estate measured using Method 1 and Method 2 is consistent. For firms in both samples, the estimates are 0.7 correlated. The levels also match up. The similarity is high because most firms’ owned properties are limited and are concentrated in the headquarters location, so the assumption used in traditional estimates largely holds (e.g. as of 2006 Starbucks only owns some headquarters office space and four roasting facilities).

Table 8 also reports the characteristics of firms in the Method 2 sample. These firms are slightly smaller than those in the Method 1 sample (60% of the sample are large firms). They utilize more asset-based lending compared to the Method 1 sample, although cash flow-based lending still accounts for the majority of their debt (median share is 65%); 47%
have earnings-based covenants. They are similar to other firms with real estate in terms of book PPE and profitability, and have slightly lower book leverage.

Results

Table 9 presents the results, for all firms where real estate value measures are available (Panel A) as well as the subsample with tradable firms only (Panel B). We get similar results across different samples. A one dollar increase in real estate value is on average associated with an increase in net long-term debt issuance of about three cents. The positive response is concentrated in asset-based debt. It is absent among cash flow-based debt. We can further break down cash flow-based debt into cash flow-based loans and bonds, and the positive sensitivity is absent in both categories. These patterns hold not just for debt issuance, but also for the level of debt, as shown in Appendix A Table 2.

The results are similar whether we restrict to tradable firms or not. Non-financial firms in our samples are generally sufficiently large that their product demand may not be concentrated in areas where they own properties, even for some non-tradable firms (e.g. Starbucks is a non-tradable firm, but it owns mostly a few roasting facilities far from product markets). Thus for most firms, property price shocks at firms’ real estate locations seem sufficiently exogenous to their product demand.

Meanwhile, in Table 9 the coefficients on EBITDA are significant, and the magnitudes are comparable with our findings in Section 3 (the EBITDA coefficients in Table 9 are about 0.15 to 0.2, driven by the roughly 60% of firms in these samples with EBCs). In our samples which primarily consist of large firms that borrow through cash flow-based lending, EBITDA appears to have a bigger average impact on borrowing than property collateral value (0.03).

Taken together, the results suggest that a substantial portion of large non-financial firms’ debt (cash flow-based debt) does not rely significantly on real estate value. With these alternative venues for borrowing, the overall sensitivity of borrowing and investment to property prices appears limited. For instance, for a firm with a median level of real estate holdings (real estate value is 0.2 times book asset value), a 20% decline in property price would decrease its real estate value by about 0.04 of book assets, and reduce its borrowing by about 0.0012 of book assets (0.04×0.03).\(^{29}\) In the following, we use this observation to shed light on features of the Great Recession, and further unpack the transmission of property price declines.

4.2 The Great Recession: Unpacking the Property Price Effect

Since the Great Recession, a vibrant strand of research investigates the impact of the property value collapse. The key insight is that property price declines damaged household

\(^{29}\)Chaney, Sraer, and Thesmar (2012) find the same sensitivity has large explanatory power for borrowing and investment across firms, due to substantial cross-sectional differences in firms’ real estate holdings.
balance sheets, dried up aggregate demand, and led to drops in investment and employment (Mian and Sufi, 2014; Giroud and Mueller, 2017). Property price declines, however, may also transmit through collateral damage to firms. Less is known about the role of this second channel in the Great Recession. Indeed, collateral damage to firms plays a critical role both in theories of financial acceleration (Kiyotaki and Moore, 1997; Bernanke et al., 1999), and in some international experiences such as Japan in the early 1990s (Peek and Rosengren, 2000; Gan, 2007). Such a mechanism, however, could be attenuated if firms primarily utilize cash flow-based lending.

In the following, we examine the impact of corporate property value in the Great Recession. We proceed in two steps. We first note that the limited impact due to declines in firms’ property value could be inferred from insights in studies of the household demand channel. Specifically, Mian and Sufi (2014) study the impact of property prices on local employment growth during the Great Recession, and propose a comparison of tradable vs. non-tradable industries. The key idea is that property prices affect local household demand: firms in non-tradable industries are exposed to local demand, so they should be more sensitive to local property price changes. Firms in tradable industries, on the other hand, face demand from a larger market, so they should be less sensitive. Consistent with the hypothesis, Mian and Sufi (2014) find strong responses of local employment to local house prices among non-tradable firms. They do not find any relationship among tradable firms. Giroud and Mueller (2017) find similar strong relationships among non-tradable firms, and no relationship among tradable firms.

Nonetheless, property price declines at a firm’s location affect not only local demand, but also the value of the firm’s real estate assets. This channel through property collateral value is relevant for both tradable and non-tradable firms. If this channel is strong, we would expect that tradable firms also display some sensitivity to local property price changes. The null result from prior work thus hints at the muted impact of property collateral damage among US non-financial firms in the Great Recession.

We then further unpack the transmission of property price declines in the Great Recession in Table 10. We disentangle the firm-side property collateral value channel using firm property holdings data. We exploit firms’ differential exposures to property value shocks through the following cross-sectional specification:

$$\Delta Y_{i}^{07-09} = \alpha + \lambda \Delta RE_{i}^{07-09} + \eta \Delta P_{i}^{07-09} + \phi \Delta EBITDA_{i}^{07-09} + \beta \Delta \Delta EB ITA_{i}^{07-09} + X'_{i} \gamma + u_{i}$$ (8)

The left hand side variable Y_{i}^{07-09} is outcomes of firm i from 2007 to 2009. In Panel A, ΔY_{i}^{07-09} is the change in net long-term debt issuance from 2007 to 2009. In Panel B, ΔY_{i}^{07-09} is the change in capital expenditures. On the right hand side, the key variable of interest is $\Delta RE_{i,06}^{07-09}$, which captures changes in firm i’s real estate value from 2007 to 2009.
It is measured as the market value gain/loss of firm i's pre-crisis (end of 2006) real estate holdings during the Great Recession, normalized by assets in 2006. This variable is the main focus for analyzing the property collateral channel. We also include $\text{RE}_{i,06}^i$, which controls for firm i's pre-crisis real estate holdings (normalized by assets in 2006). In addition, we control for ΔP_{i}^{07-09}, the percentage change in property prices in firm i’s locations, which captures the impact of property prices that may work through local household demand. We also control for changes in EBITDA, net cash receipts, and Q from 2007 to 2009, as well as Q, leverage, cash holdings, size (log assets) by the end of 2006, among others.

We measure firms’ real estate value using both of the methods described in the previous section. For Method 1, we calculate firm-level $\text{RE}_{i,06}^i$, $\Delta \text{RE}_{i,06}^{07-09}$, and ΔP_{i}^{07-09} all using headquarters information. Specifically, $\text{RE}_{i,06}^i$ is constructed based on the regular headquarters-based procedure, ΔP_{i}^{07-09} is the percent change in property prices in the headquarters location from 2007 to 2009, and $\Delta \text{RE}_{i,06}^{07-09} = \text{RE}_{i,06}^i \times \Delta P_{i}^{07-09}$. For Method 2, we calculate firm-level $\text{RE}_{i,06}^i$, $\Delta \text{RE}_{i,06}^{07-09}$, and ΔP_{i}^{07-09} by aggregating information from each owned property j of firm i. Specifically, we then sum across these properties to obtain $\text{RE}_{i,06}^i = \sum_j \text{RE}_{i,j}^0$, $\Delta \text{RE}_{i,06}^{07-09} = \sum_j \text{RE}_{i,j}^0 \times \Delta P_{i,j}^{07-09}$, where $\Delta P_{i,j}^{07-09}$ is the percentage change in property prices in the location of owned property j of firm i. In this case, we calculate the control variable ΔP_{i}^{07-09} as the average of $\Delta P_{i,j}^{07-09}$; we can alternatively calculate firm-level ΔP_{i}^{07-09} using property price changes in firm i’s headquarters or average across all locations (owned and leased), and the results are similar. The bottom of Table 8 shows additional summary statistics during the crisis. For firms in our sample, the median property price decline from 2007 to 2009, ΔP_{i}^{07-09}, is about 8%. The median decline in the market value of real estate assets from 2007 to 2009 (normalized by 2006 assets), $\Delta \text{RE}_{i,06}^{07-09}$, is about 0.01.

In this setting, there could still be concerns of property prices being correlated with local demand. In the cross-section set-up, this issue can drive down λ (i.e. contribute to insensitivity to collateral value) if firms that own more real estate are systematically less sensitive to local demand. As discussed in Section 4.1, the local demand problem does not appear severe for large firms whose demand is generally not local. Nonetheless, we also perform additional checks in Supplementary Appendix Table IA10 using tradable firms only.

Table 10 presents results using different estimates. We tease out the outliers and make sure they do not drive our results. We also report both OLS estimates and least absolute deviation (LAD) estimates (following Gan (2007)) to further alleviate the influence of outliers and skewness in the cross-sectional data. Across different estimates, we do not find evidence that declines in firms’ real estate value drove down debt issuance or capital expenditures during the Great Recession. The lack of significant results could be in part because the sensitivity is very small (as discussed in Section 4.1), which makes it hard to detect in a regular cross section. It could also be related to the structure of loans backed by real
estate, where loan-to-value constraints affect issuance but do not always affect maintenance of existing loans.\(^\text{30}\) Finally, in Table 10 the coefficients on EBITDA and OCF have the same signs and comparable magnitudes as results in Section 3.

In summary, our analysis suggests that property price declines during the Great Recession did not have a significant impact on firms’ outcomes due to collateral damage. In the following, we compare and contrast results from the US housing collapse with previous research on Japan’s housing collapse. We highlight substantial differences in the transmission of property price shocks under different regimes of corporate lending.

4.3 Property Price Declines and the Firm Collateral Channel: US vs. Japan

In the late 1980s and early 1990s, Japan experienced a major boom-bust cycle in property prices. The collapse of property prices had a far-reaching impact on Japan’s economy. As discussed earlier, corporate borrowing in Japan traditionally relies on real estate collateral, especially before the bankruptcy reforms in the early 2000s. Thus Japan’s real estate collapse took place in an environment where property value is central for corporate credit.

With the collapse of property prices, Japanese firms’ debt capacity and investment activities suffered significantly, as documented by Gan (2007). Gan (2007) studies public manufacturing firms in Japan, and uses the value of firms’ real estate prior to the collapse as the main measure of exposures to property price shocks (she estimates the market value of real estate from accounting data through a procedure similar to method 1 above). She finds that Japanese firms that owned more property pre-collapse suffered particularly severely during the bust: for a one dollar increase in a firm’s pre-collapse land holdings in 1989, average CAPX investment is lower by 13 to 16 cents from 1994 to 1998. The impact is substantial, especially that property prices peaked around 1990, and the outcome is measured as the average over five years after 1994.

In Table 11, we present results in the US sample using the same regression specifications as Table 2 column (2) of Gan (2007):

\[
\text{CAPX}_{i}^{\text{post}} = \alpha + \beta \text{RE}_{i}^{\text{pre}} + X_{i}^{'\gamma} + \nu_{i} \tag{9}
\]

where \(\text{CAPX}_{i}^{\text{post}}\) is firm \(i\)’s average annual investment rate over a period of time during the property price collapse; \(\text{RE}_{i}^{\text{pre}}\) is the value of firm \(i\)’s real estate holdings prior to the

\(^{30}\)Accordingly, when property value increases, a firm can take out a larger loan based on a given loan to property value ratio that is evaluated at issuance. When the property value declines, however, the firm would not be forced to shrink the size of existing loans. The option to take out larger loans when property prices increase, coupled with the lack of forced debt reduction when property prices drop, could contribute to less sensitivity to property value in recessions than in normal times.
collapse, which captures firms’ exposures to real estate; \(X_i \) includes firm level controls (cash flows during the post period, \(Q \), cash holdings, a dummy indicating firms with above median real estate holdings, and interactions of cash flows and cash holdings with this dummy). This specification is different from our tests in Equation (8) above and provides an alternative test. As Table 11 shows, in the US Great Recession, we do not find results similar to what Gan (2007) found in Japan. There is no significant correlation between a firms’ pre-crisis real estate holdings and its subsequent outcome. The sharp contrast suggests that the transmission mechanisms of a property price collapse could be different in different settings, depending on the lending regime and the central determinants of firms’ debt capacity.

4.4 Earnings Drop and Firm Outcomes in the Great Recession

Finally we perform a basic assessment of the impact of earnings-based borrowing constraints during the Great Recession.

From 2007 to 2009, total earnings of large Compustat firms with EBCs fell by $123 billion. Based on baseline results in Table 4, this is associated with a $33.5 billion decline in net long-term debt issuance due to EBCs, which accounts for 10.6% of the issuance decline among all Compustat firms. It is associated with a $14 billion reduction in CAPX due to EBCs, which accounts for 8.7% of CAPX declines among Compustat firms. If we augment the baseline regression with two dummy variables indicating covenant violation and within 0.5 standard deviations of violation to allow for discontinuity in outcome variables due to violations, the total impact increases slightly to 14.4% of declines in net long-term debt issuance and 9.5% of declines in CAPX. Results are also similar if we estimate a cross-sectional regression for firms with EBCs focusing on the Great Recession period (EBCs account for 10.7% of declines in net long-term debt issuance and 9% of declines in CAPX).\(^\text{31}\) Overall, the impact due to EBCs is meaningful but not catastrophic. The results are consistent with structural estimates of the impact of firm-side credit frictions in the Great Recession in Mehrotra and Sergeyev (2018) and reduced-form estimates in Chodorow-Reich and Falato (2017).

Taken together, results in this section show that major US non-financial firms did not appear to suffer from significant collateral damage due to property price declines in the

\[\Delta Y_{07-09}^{i} = \alpha + \beta \Delta \text{EBITDA}_{07-09}^{i} + \kappa \Delta \text{OCF}_{07-09}^{i} + X_i \gamma + u_i, \]

where \(\Delta Y_{07-09}^{i} \) is firm \(i \)'s change in net debt issuance (or CAPX) from 2007 to 2009, \(\Delta \text{EBITDA}_{07-09}^{i} \) is its change in EBITDA; controls include changes in \(Q \) and pre-crisis \(Q \), as well as cash holdings, book leverage, book PPE, size, among other firm characteristics measured at the end of 2006. We then calculate changes in the outcome variable predicted by changes in EBITDA. Finally, we sum up the firm level impact across all large non-financial firms with EBCs.

\(\text{For Estimate } 1, \text{ we use the regression in Table 4, and calculate the change in the outcome variable predicted by the change in EBITDA. We renormalize the outcome to dollar amounts and sum across all large firms with EBCs. For Estimate 2, the procedure is the same, except we add two dummies to capture potential non-linear impact when firms violate earnings-based covenants or are very close to violation. For Estimate 3, we instead use cross-sectional regressions restricted to the Great Recession period. We run a cross-sectional regression among large non-financial firms with EBCs: } \]
Great Recession. In the US setting, the impairment of banks’ balance sheets (Chodorow-Reich, 2014; Becker and Ivashina, 2014) and household demand (Mian and Sufi, 2014) can be the primary sources of vulnerability, and non-financial firms were not the epicenter of the crisis (Gertler and Gilchrist, 2018). Our analysis of corporate borrowing helps put this into perspective: the experiences in the US are not taken for granted; firms could have suffered more significantly from collateral damage if asset-based lending against real estate were central, like in the case of Japan.

5 Further Implications

Financial acceleration. With cash flow-based lending and EBCs, given that firms’ borrowing capacity is not directly tied to the liquidation value of physical assets, financial acceleration through firms’ balance sheet may dampen as asset price feedback dissipates.

To illustrate this observation, we perform a simple analysis of financial acceleration dynamics under different forms of borrowing constraints, based on a standard general equilibrium framework following Kiyotaki and Moore (1997). We examine both collateral-based constraints (borrowing limit depends on the liquidation value of physical assets) as in the original work, and earnings-based constraints (borrowing limit depends on a multiple of cash flows/earnings). We compare the equilibrium impact of a shock to productive firms’ internal funds in these two scenarios (the same shock as considered by Kiyotaki and Moore (1997)), starting from the same steady state in both cases.

The results show that, after the shock hits, the impact on productive firms’ capital holding and aggregate output is much stronger with collateral-based constraints, due to the well-known asset price feedback. This mechanism is muted with EBCs: when the market/liquidation value falls, a firm’s borrowing constraint is not automatically tightened, and fire sale amplifications are not present. Using parameters similar to Kiyotaki and Moore (1997), we find the impact on productive firms’ capital holding and aggregate output under collateral-based constraints can be about ten times as large as that under earnings-based constraints. Dampening the asset price feedback could be very important. We present the details of the set-up, equilibrium dynamics, and analyses in Appendix E.

This analysis is admittedly stylized. It highlights that with non-financial firms and EBCs alone, financial acceleration and amplification may be dampened. The balance sheets of firms alone may not be the key financial accelerator. Nonetheless, asset price feedback can be very important among financial institutions and households. In a fully fledged model, it could also be interesting to explore the interactions among different sectors (households, financial institutions, non-financial firms) that face different types of borrowing constraints.

Economic recovery. Recessions are commonly accompanied by asset price declines.
Prices of physical assets are often slow to recover, which can have a long lasting impact on firms’ ability to borrow if asset-based lending prevails and constraints are tied to the value of physical collateral, like in the case of Japan. For example, Japanese property price declines in the early 1990s had a persistent impact on firms’ investment during 1994 to 1998, while such effects do not exist in the US data for the Great Recession, as discussed in Section 4.3. Indeed, Japanese corporate investment did not return to the peak around 1990 even by early 2000s (Kang, 2014).

On the other hand, corporate earnings tend to be less volatile and recover faster. In the US, corporate earnings recovered to the pre-crisis peak by 2012 as shown in Figure 7 (meanwhile the Case-Shiller property price index did not return to the pre-crisis peak level until around 2018). Correspondingly, non-financial corporate investment also returned to the 2007 peak by 2012 based on both Flow of Funds data and Compustat data. Overall, unlike Japan, in the US corporate balance sheet impairment does not appear to drive the recession or inhibit the recovery (Adrian, Colla, and Shin, 2013; Gertler and Gilchrist, 2018; Rognlie, Shleifer, and Simsek, 2018). This outcome is not taken for granted. The Great Recession could have been aggravated and the recovery could have been more challenging if corporate borrowing in the US mimics that of Japan and depends heavily on real estate assets.

Monetary policy transmission. As shown in Section 2.2, EBCs are commonly specified as restrictions on total debt relative to operating earnings \(b_t \leq \phi \pi_t \) (debt-to-earnings constraint), or interest payments relative to operating earnings \(r_t b_t \leq \theta \pi_t \) (coverage ratio constraint). Monetary policy can directly affect the latter constraint by changing the interest rate \(r_t \) (via benchmark rates and possibly also via impact on credit spreads (Gertler and Karadi, 2015)). This mechanism would be stronger if the coverage ratio constraint is more binding than the debt-to-earnings constraint (when applicable), and if the firm has a significant amount of debt that reprices (e.g. floating rate debt, short-term debt, maturing debt).

In the data, among firms with earnings-based covenants, about 80% have debt-to-earnings covenants, 80% have coverage ratio covenants, and about 65% have both. For the time period around 2007 to 2008, the coverage ratio covenant is the tighter one for roughly 45% of firms with earning-based covenants (i.e. allows a smaller amount of total debt compared to the debt-to-earnings covenants). Accordingly, monetary policy may affect firms’ borrowing and investment through its impact on EBCs.\(^{32}\)

Credit access and allocation. One concern in recent research is that firms’ assets become increasingly intangible as the economy becomes more intensive in services and technology: firms may not have enough physical assets to pledge as collateral, and may face tighter borrowing constraints (Giglio and Severo, 2012; Garcia-Macia, 2017). Another con-

\(^{32}\)We thank our discussant Dan Greenwald for suggesting this implication.
cern is that the lack of tangible assets may distort resource allocation across firms (Catherine et al., 2017). The form of corporate borrowing is important for the severity of these issues. In the US, with the prevalence of cash flow-based lending and EBCs, firms do not necessarily need to rely on psychical assets for borrowing. As our findings suggest, for firms with easy access to cash flow-based lending (e.g. large firms, high profitability firms), the sensitivity of borrowing to physical assets is small; we also do not find total borrowing to decrease with the share of intangible assets a firm has. Nonetheless, intangible assets could limit borrowing capacity among small or low profitability firms that have less access to cash flow-based lending, or among firms in countries where asset-based lending dominates.

Relationship with the net worth channel. One possible question is how our findings relate to the net worth channel in the macro-finance literature. The core of the net worth channel is that external financing is costly, in which case internal funds (i.e. net worth) have a significant impact on firms’ financial and real outcomes.\(^{33}\) The existence of the net worth channel per se does not pin down the exact form of corporate borrowing and borrowing constraints (see Bernanke and Gertler (1989) and Holmstrom and Tirole (1997) for net worth channel with borrowing based on cash flows, and Kiyotaki and Moore (1997) and Bernanke et al. (1999) for net worth channel with borrowing based on physical assets). The general lesson of the net worth channel, i.e. internal funds can influence firm outcomes, applies in our setting. Beyond this, our paper focuses on the form of corporate borrowing, which shapes how financial variables affect firms’ borrowing constraints and the applicability of key macro-finance mechanisms, as explained above.

6 Conclusion

In this paper, we collect detailed data to empirically study borrowing constraints of non-financial firms. We show that cash flow-based lending accounts for the vast majority of US large non-financial firms’ debt. With cash flow-based lending, a standard borrowing constraint restricts firms’ total debt based on a particular measure of cash flows, namely operating earnings. We lay out the legal and economic determinants of these corporate borrowing practices.

These features of corporate borrowing influence firm outcomes on the margin, and tie together several issues. First, with cash flow-based lending and EBCs, cash flows in the form of operating earnings can directly relax borrowing constraints. On the other hand, this effect is absent when asset-based lending prevails, which generates variations in firm behavior. Second, the prevalence of cash flow-based lending alleviates firms’ dependence on the value

\(^{33}\)Bernanke et al. (1999), for instance, define net worth as the firm’s maximum amount of internal funds available that can be used to acquire new assets and projects. Based on this definition, net worth and internal funds can be used interchangeably.
of physical assets. Correspondingly, large US firms’ borrowing and investment were not particularly vulnerable to property price declines in the Great Recession through collateral damage. Taken together, major US non-financial firms do face borrowing constraints, but the primary constraint appears different from the commonly studied collateral constraint. Instead, cash flow-based lending and earnings-based borrowing constraints play a key role.

Finally, corporate borrowing practices depend on legal infrastructure. Legal institutions can be important for the form of corporate borrowing constraints and the applicability of macro-finance mechanisms.
References

Catherine, Sylvain, Thomas Chaney, Zongbo Huang, David A Sraer, and David Thesmar, 2017, Aggregate effects of collateral constraints, Working paper.

Cloyne, James, Clodomiro Ferreira, Maren Froemel, and Paolo Surico, 2018, Monetary policy, corporate finance, and investment, Working paper.

Fazzari, Steven M, R Glenn Hubbard, and Bruce C Petersen, 2000, Investment-cash flow sensitivities are useful: A comment on Kaplan and Zingales, Quarterly Journal of Economics 115, 695–705.

Gertler, Mark, and Peter Karadi, 2015, Monetary policy surprises, credit costs, and economic activity, American Economic Journal: Macroeconomics 7, 44–76.

Myers, Stewart C, and Nicholas S Majluf, 1984, Corporate financing and investment decisions when firms have information that investors do not have, *Journal of Financial Economics* 13, 187–221.

Main Figures and Tables

Figure 1: Prevalence of Cash Flow-Based Lending and EBCs: Large Compustat Firms

This figure shows the prevalence of cash flow-based lending and EBCs among large US non-financial firms in Compustat. In Panel A, we sum up firm-level estimates of asset-based and cash flow-based lending across all large firms (assets above Compustat median), and plot the share of each type among total debt of these firms in each year. Large firms account for more than 95% of debt, sales, investment, and employment among all Compustat firms. The solid line with diamond represents the share of cash flow-based lending; the dashed line with circle represents the share of asset-based lending. In Panel B, we merge covenant data from DealScan and FISD with Compustat, and plot the fraction of large firms with earnings-based covenants each year.

Panel A. Share of Cash Flow-Based Lending in Total Debt Outstanding

Panel B. Fraction of Firms with Earnings-Based Covenants
This plot shows the relationship between debt growth and compliance with earnings-based covenants in DealScan loans. The x-axis is 20 bins based on distance to violation by year end, and the y-axis is the average debt growth in the next year in each bin. As shown in Table A3, there are several variants of earnings-based covenants. Firms sometimes have more than one type, and different firms can also use different types. To find a uniform measure of distance, we first compute the minimum amount of earnings (π_{it}) required such that the firm is in compliance with all of its earnings-based covenants (given the current level of debt and debt payments). We then compute the difference between the minimum earnings required (π_{it}) and the actual earnings (π_{it}), scaled by lagged assets. We normalize this distance by the standard deviation of ROA in the firm’s 2-digit SIC industry. We take the firm-year observations that are within +/- 2 standard deviations, and group them into 20 equally spaced bins. The first bin on the right on the dashed line at zero includes firms within 0 to 0.2 standard deviations, so on so forth. Firms in the shaded region to the left of zero are those that are not in compliance with at least one earnings-based covenant based on DealScan data; those to the right of zero are in compliance with all such covenants.
Figure 3: Bunching around Earnings-Based Covenant Threshold

This plot shows the histogram of firm-year observations across the same bins as in Figures 2. The bins measure the distance to violating earnings-based loan covenants in DealScan data. Firms to the right of zero are in compliance with all earnings-based covenants in DealScan data.
Figure 4: Prevalence of Cash Flow-Based Lending and EBCs: Rated Firms by Industry

This figure shows the prevalence of cash flow-based lending and EBCs across major industry groups. We focus on rated firms to make firm size and capital market access more comparable across industries. The industry groups are Fama-French 12 industries plus airlines (two digit SIC is 45). Panel A shows the median share of cash flow-based lending in all rated firms and in rated firms of each industry group. Panel B shows the fraction of firms with earnings-based covenants in each group.

Panel A. Median Share of Cash Flow-Based Lending

Panel B. Fraction of Firms with EBCs
This figure shows the coefficient β on EBITDA from Table 4 Panel A column (2) and Table 5 Panel A columns (2), (4), (6), (8), which use the same baseline specification:

$$Y_{it} = \alpha_i + \eta_t + \beta \text{EBITDA}_{it} + X_{it}' \gamma + \epsilon_{it}$$

The outcome variable Y_{it} is net long-term debt issuance. “Large w/ EBC” is large non-financial firms with earnings-based covenants. “Large w/o EBC” is large non-financial firms without earnings-based covenants, which are generally firms that use cash flow-based lending but are far from earnings-based constraints. “Small,” “Low Margin,” and “Airlines & Utilities” are small firms, low margin firms, and airlines and utilities which have low prevalence of cash flow-based lending and EBCs.

This figure shows the coefficient β on EBITDA, and the coefficient ϕ on beginning-of-year Q, from regressions predicting future EBITDA in year $t+1$ and $t+2$:

$$Y_{i,t+k} = \alpha_i + \eta_t + \beta \text{EBITDA}_{it} + \phi Q_{it} + X_{it}' \gamma + \epsilon_{it}$$

The outcome variable $Y_{i,t+k}$ is EBITDA in year $t+1$ and $t+2$ (normalized by lagged assets). The circles represent coefficients when $Y_{i,t+k}$ uses $k = 1$; the diamonds represent coefficients when $Y_{i,t+k}$ uses $k = 2$. The right-hand-side variables are the same as the main specification in Tables 4 and 5.
Figure 7: Non-Financial Corporate Earnings

Panel A shows total earnings before tax of the non-financial corporate sector in Flow of Funds (solid line with circles), total earnings before tax of firms in Compustat (dashed line with diamonds), and total earnings before interest, taxes, depreciation and amortization (EBITDA) of firms in Compustat (dashed line with crosses). Panel B shows EBITDA normalized by lagged assets for Compustat total (solid line with circles), median of large Compustat firms (dashed line with diamonds), and median of all Compustat firms (dashed line with crosses).

Panel A. Total Non-Financial Corporate Earnings

Panel B. EBITDA to Assets
Table 1: Composition of Corporate Borrowing

This table summarizes the composition of corporate debt. Panel A shows aggregate estimates by debt type. Panel B shows median share by firm group (among Compustat non-financial firms). Procedures for aggregate estimates and firm-level analyses are explained in detail in Appendix A.

Panel A. Aggregate Corporate Debt Share by Type:

<table>
<thead>
<tr>
<th>Category</th>
<th>Debt Type</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset-based lending (20%)</td>
<td>Mortgage</td>
<td>6.5%</td>
</tr>
<tr>
<td></td>
<td>Asset-based loans</td>
<td>13.5%</td>
</tr>
<tr>
<td>Cash flow-based lending (80%)</td>
<td>Corporate bond</td>
<td>48.0%</td>
</tr>
<tr>
<td></td>
<td>Cash flow-based loans</td>
<td>32.0%</td>
</tr>
</tbody>
</table>

Panel B. Firm-Level Median Share by Group (Compustat)

<table>
<thead>
<tr>
<th></th>
<th>Large Firms</th>
<th>Rated Firms</th>
<th>Small Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset-based lending</td>
<td>12.4%</td>
<td>8.0%</td>
<td>61.0%</td>
</tr>
<tr>
<td>Cash flow-based lending</td>
<td>83.0%</td>
<td>89.0%</td>
<td>7.2%</td>
</tr>
</tbody>
</table>
Table 2: Properties of Asset-Based Debt and Cash Flow-Based Debt

Firm-level annual panel regressions of debt in each category on the amount of specific assets (all normalized by book assets). In Panel A, the right-hand-side variables include all asset-based lending, as well as mortgages and non-mortgage asset-based loans in particular. In Panel B, the right-hand-side variables include all cash flow based lending, as well as secured cash flow-based lending and cash flow-based loans in particular. Liquidation value is estimated liquidation value of plant, property, and equipment (PPE), inventory, and receivable, using industry average liquidation recovery rate collected from bankruptcy filings. Controls include size (log assets) and cash holdings. Columns (3) and (4) include firm fixed effects. Sample period is 2003 to 2015, and all Compustat non-financial firms which have CapitalIQ debt detail data are included. Standard errors are clustered by firm and time.

Panel A. Asset-Based Lending and Physical Assets

<table>
<thead>
<tr>
<th></th>
<th>Total Asset-Based Lending/Assets</th>
<th>Mortgages/Assets</th>
<th>(Non-Mortgage) Asset-Based Loans/Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Book PPE</td>
<td>Inventory</td>
<td>Receivable</td>
</tr>
<tr>
<td></td>
<td>0.129***</td>
<td>0.051***</td>
<td>0.065***</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.018)</td>
<td>(0.016)</td>
</tr>
<tr>
<td></td>
<td>0.122***</td>
<td>0.080***</td>
<td>0.050***</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.033)</td>
<td>(0.023)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Book PPE</td>
<td>Inventory</td>
<td>Receivable</td>
</tr>
<tr>
<td></td>
<td>0.028***</td>
<td>0.0001</td>
<td>-0.007***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td></td>
<td>0.016***</td>
<td>0.030</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Book PPE</td>
<td>Inventory</td>
<td>Receivable</td>
</tr>
<tr>
<td></td>
<td>0.078***</td>
<td>0.056***</td>
<td>0.073***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.014)</td>
<td>(0.014)</td>
</tr>
<tr>
<td></td>
<td>0.099***</td>
<td>0.070***</td>
<td>0.051***</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.026)</td>
<td>(0.020)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses, clustered by firm and time.
<table>
<thead>
<tr>
<th></th>
<th>Total Cash Flow-Based Lending/Assets</th>
<th>Secured Cash Flow-Based Lending/Assets</th>
<th>Cash Flow-Based Loans/Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book PPE</td>
<td>-0.101***</td>
<td>-0.054***</td>
<td>-0.050***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.007)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Inventory</td>
<td>-0.232***</td>
<td>-0.064***</td>
<td>-0.057***</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.009)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Receivable</td>
<td>-0.330***</td>
<td>-0.094***</td>
<td>-0.071***</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.011)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Liquidation value</td>
<td>-0.297***</td>
<td>-0.115***</td>
<td>-0.101***</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.014)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Firm FE</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Obs</td>
<td>46,362</td>
<td>45,683</td>
<td>45,491</td>
</tr>
<tr>
<td>R²</td>
<td>0.064</td>
<td>0.034</td>
<td>0.051</td>
</tr>
</tbody>
</table>

Standard errors in parentheses, clustered by firm and time.
Table 3: Summary Statistics of US Non-Financial Firms

Summary statistics of non-financial firm samples. Panel A shows statistics for large firms with EBCs. Large firms are those with size (assets) above Compustat median, and EBCs are based on DealScan and FISD data. Mean, median, standard deviation, and selected percentiles are presented. Panel B shows statistics for several firm groups that are not bound by EBCs, including large firms without earnings-based covenants (primarily use cash flow-based lending but are far from constraints), as well as small firms, low margin firms, and airlines and utilities that rely more on asset-based lending. Medians are presented for each group. EBITDA is earnings before interest, taxes, and depreciation. OCF is net cash receipts from operations. MTB is market equity to book equity. Q is calculated as the sum of market value of equity and book value of debt, divided by book assets. EDF is expected default frequency. AR stands for accounts receivable, PPE is the book value of property, plant, and equipment, CAPX is capital expenditures (spending on property, plant, and equipment). As is customary, flow variables are normalized by lagged assets and stock variables are normalized by contemporaneous assets throughout the paper. CFL share is median share of cash flow-based lending in each firm group. The sample period is 1996 to 2015 because comprehensive data on financial covenants from DealScan began in 1996.

Panel A. Large Firms w/ EBCs

<table>
<thead>
<tr>
<th>Variable</th>
<th>p25</th>
<th>p50</th>
<th>p75</th>
<th>mean</th>
<th>s.d.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log assets</td>
<td>6.36</td>
<td>7.16</td>
<td>8.15</td>
<td>7.33</td>
<td>1.33</td>
<td>17,458</td>
</tr>
<tr>
<td>Log market cap</td>
<td>5.94</td>
<td>6.91</td>
<td>7.95</td>
<td>6.95</td>
<td>1.57</td>
<td>17,458</td>
</tr>
<tr>
<td>EBITDA</td>
<td>68.39</td>
<td>172.15</td>
<td>464.44</td>
<td>611.98</td>
<td>2110.27</td>
<td>17,458</td>
</tr>
<tr>
<td>EBITDA/Assets</td>
<td>0.09</td>
<td>0.13</td>
<td>0.19</td>
<td>0.14</td>
<td>0.09</td>
<td>17,458</td>
</tr>
<tr>
<td>EBITDA/Sales</td>
<td>0.08</td>
<td>0.14</td>
<td>0.21</td>
<td>0.14</td>
<td>0.52</td>
<td>17,458</td>
</tr>
<tr>
<td>Debt/EBITDA</td>
<td>1.03</td>
<td>2.18</td>
<td>3.80</td>
<td>2.70</td>
<td>3.49</td>
<td>17,458</td>
</tr>
<tr>
<td>Debt/Assets</td>
<td>0.17</td>
<td>0.29</td>
<td>0.43</td>
<td>0.31</td>
<td>0.22</td>
<td>17,458</td>
</tr>
<tr>
<td>EDF</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.13</td>
<td>0.26</td>
<td>17,458</td>
</tr>
<tr>
<td>Q</td>
<td>0.79</td>
<td>1.06</td>
<td>1.54</td>
<td>1.30</td>
<td>0.87</td>
<td>17,458</td>
</tr>
<tr>
<td>MTB</td>
<td>1.13</td>
<td>1.86</td>
<td>3.00</td>
<td>2.44</td>
<td>2.89</td>
<td>17,150</td>
</tr>
<tr>
<td>OCF/Assets</td>
<td>0.08</td>
<td>0.12</td>
<td>0.16</td>
<td>0.12</td>
<td>0.08</td>
<td>17,445</td>
</tr>
<tr>
<td>Cash/assets</td>
<td>0.02</td>
<td>0.05</td>
<td>0.12</td>
<td>0.09</td>
<td>0.10</td>
<td>17,445</td>
</tr>
<tr>
<td>PPE/Assets</td>
<td>0.13</td>
<td>0.26</td>
<td>0.48</td>
<td>0.32</td>
<td>0.24</td>
<td>17,458</td>
</tr>
<tr>
<td>Inventory/Assets</td>
<td>0.01</td>
<td>0.08</td>
<td>0.18</td>
<td>0.12</td>
<td>0.12</td>
<td>17,458</td>
</tr>
<tr>
<td>AR/Assets</td>
<td>0.07</td>
<td>0.12</td>
<td>0.20</td>
<td>0.15</td>
<td>0.11</td>
<td>17,458</td>
</tr>
<tr>
<td>Intangible/Assets</td>
<td>0.05</td>
<td>0.16</td>
<td>0.34</td>
<td>0.22</td>
<td>0.20</td>
<td>17,458</td>
</tr>
<tr>
<td>Net LT debt issuance/l.assets</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.05</td>
<td>0.03</td>
<td>0.15</td>
<td>16,186</td>
</tr>
<tr>
<td>CAPX/l.assets</td>
<td>0.02</td>
<td>0.04</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>17,371</td>
</tr>
<tr>
<td>R&D/l.assets</td>
<td>0.00</td>
<td>0.01</td>
<td>0.04</td>
<td>0.03</td>
<td>0.05</td>
<td>8,826</td>
</tr>
<tr>
<td>CFL share</td>
<td>0.46</td>
<td>0.88</td>
<td>0.99</td>
<td>0.69</td>
<td>0.36</td>
<td>10,855</td>
</tr>
</tbody>
</table>

Panel B. Other Firm Groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Large w/o EBCs</th>
<th>Small</th>
<th>Low Margin</th>
<th>Air & Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p50</td>
<td>N</td>
<td>p50</td>
<td>N</td>
</tr>
<tr>
<td>Log assets</td>
<td>6.85</td>
<td>11,382</td>
<td>4.09</td>
<td>22,336</td>
</tr>
<tr>
<td>Log market cap</td>
<td>7.05</td>
<td>11,382</td>
<td>4.08</td>
<td>22,336</td>
</tr>
<tr>
<td>EBITDA</td>
<td>119.58</td>
<td>11,382</td>
<td>2.19</td>
<td>22,336</td>
</tr>
<tr>
<td>EBITDA/Assets</td>
<td>0.12</td>
<td>11,382</td>
<td>0.06</td>
<td>22,336</td>
</tr>
<tr>
<td>EBITDA/Sales</td>
<td>0.14</td>
<td>11,382</td>
<td>0.04</td>
<td>22,336</td>
</tr>
<tr>
<td>Debt/EBITDA</td>
<td>0.99</td>
<td>11,382</td>
<td>0.00</td>
<td>22,336</td>
</tr>
<tr>
<td>Debt/Assets</td>
<td>0.18</td>
<td>11,382</td>
<td>0.07</td>
<td>22,336</td>
</tr>
<tr>
<td>EDF</td>
<td>0.00</td>
<td>11,382</td>
<td>0.01</td>
<td>22,336</td>
</tr>
<tr>
<td>Q</td>
<td>1.25</td>
<td>11,382</td>
<td>1.23</td>
<td>22,336</td>
</tr>
<tr>
<td>MTB</td>
<td>2.07</td>
<td>11,382</td>
<td>1.78</td>
<td>22,336</td>
</tr>
<tr>
<td>OCF/Assets</td>
<td>0.11</td>
<td>11,377</td>
<td>0.05</td>
<td>22,289</td>
</tr>
<tr>
<td>Cash/assets</td>
<td>0.13</td>
<td>11,382</td>
<td>0.19</td>
<td>22,336</td>
</tr>
<tr>
<td>PPE/Assets</td>
<td>0.21</td>
<td>11,382</td>
<td>0.13</td>
<td>22,336</td>
</tr>
<tr>
<td>Inventory/Assets</td>
<td>0.06</td>
<td>11,382</td>
<td>0.08</td>
<td>22,336</td>
</tr>
<tr>
<td>AR/Assets</td>
<td>0.11</td>
<td>11,382</td>
<td>0.15</td>
<td>22,336</td>
</tr>
<tr>
<td>Intangible/Assets</td>
<td>0.08</td>
<td>11,382</td>
<td>0.04</td>
<td>22,336</td>
</tr>
<tr>
<td>Net LT debt issuance/l.assets</td>
<td>0.00</td>
<td>10,778</td>
<td>0.00</td>
<td>21,166</td>
</tr>
<tr>
<td>CAPX/l.assets</td>
<td>0.04</td>
<td>11,309</td>
<td>0.03</td>
<td>22,150</td>
</tr>
<tr>
<td>R&D/l.assets</td>
<td>0.05</td>
<td>7,085</td>
<td>0.08</td>
<td>15,485</td>
</tr>
<tr>
<td>CFL share</td>
<td>0.88</td>
<td>5,277</td>
<td>0.00</td>
<td>8,634</td>
</tr>
</tbody>
</table>
Table 4: Debt Issuance and Investment Activities: Large Firms w/ EBCs

Firm-level annual regressions of debt issuance and investment activities:

\[Y_{it} = \alpha_i + \eta_t + \beta \text{EBITDA}_{it} + X'_{it} \gamma + \epsilon_{it} \]

In Panel A the outcome variable \(Y_{it} \) is net debt issuance. In Columns (1) and (2) \(Y_{it} \) is our main debt issuance measure: net debt issuance in year \(t \) from the statement of cash flows, calculated as issuance minus reduction of long-term debt (Compustat item DLTIS - DLTR), normalized by assets at the end of year \(t - 1 \). In Columns (3) to (4) \(Y_{it} \) is changes in total book debt in year \(t \). In Columns (5) to (8), \(Y_{it} \) is changes in both secured and unsecured debt, using data from CapitalIQ. In Panel B, the outcome variable \(Y_{it} \) is investment activities. In Columns (1) and (2), \(Y_{it} \) is capital expenditures (Compustat variable CAPX, which covers purchases of plant, property, and equipment) in year \(t \), normalized by assets at the end of year \(t - 1 \). In Columns (3) and (4), \(Y_{it} \) is R&D expenditures (Compustat variable XRD, only non-missing for a subset of firms). EBITDA is earnings before interest, taxes, depreciation and amortization (Compustat item EBITDA) in year \(t \), normalized by assets at the end of year \(t - 1 \). OCF is net cash receipts from operating activities (Compustat item OANCF + XINT) in year \(t \). Other control variables include \(Q \) (market value of equity plus book value of debt normalized by book assets) as of the beginning of year \(t \), stock returns in year \(t - 1 \), as well as cash holdings, book leverage (debt/assets), book PPE (plant, property, equipment), intangible assets, margin, size (log assets) at the end of \(t - 1 \). We also control for net operating assets at the end of year \(t - 1 \) as a proxy for accounting quality (Hirshleifer et al., 2004), and lagged EBITDA to focus on the impact of current EBITDA. Firm fixed effects and year fixed effects are included (\(R^2 \) does not include fixed effects). Sample period is 1996 to 2015. The sample is restricted to large US non-financial firms that have earnings-based covenants in year \(t \). Standard errors are clustered by firm and time.

Panel A. Debt Issuance

<table>
<thead>
<tr>
<th>Net LT Debt Iss.</th>
<th>∆ Book Debt</th>
<th>∆ Unsec. Debt</th>
<th>∆ Secured Debt</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBITDA</td>
<td>0.216***</td>
<td>0.273***</td>
<td>0.345***</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.034)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>OCF</td>
<td>-0.111***</td>
<td>0.045</td>
<td>-0.135***</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.045)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>Q</td>
<td>0.010**</td>
<td>0.011**</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Past 12m stock ret</td>
<td>-0.003</td>
<td>-0.003</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>L.Cash holding</td>
<td>-0.033</td>
<td>-0.033</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.044)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Obs</td>
<td>15,642</td>
<td>15,642</td>
<td>15,576</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.114</td>
<td>0.116</td>
<td>0.152</td>
</tr>
</tbody>
</table>

Standard errors in parentheses, clustered by firm and time

Panel B. Investment Activities

<table>
<thead>
<tr>
<th>CAPX</th>
<th>R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBITDA</td>
<td>0.129***</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
</tr>
<tr>
<td>OCF</td>
<td>0.053***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
</tr>
<tr>
<td>Q</td>
<td>0.011***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
</tr>
<tr>
<td>Past 12m stock ret</td>
<td>0.004*</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
</tr>
<tr>
<td>L.Cash holding</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Y</td>
</tr>
<tr>
<td>Year FE</td>
<td>Y</td>
</tr>
<tr>
<td>Obs</td>
<td>16,907</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.156</td>
</tr>
</tbody>
</table>

Standard errors in parentheses, clustered by firm and time
Table 5: Debt Issuance and Investment Activities: Firms w/ Low Prevalence of EBCs

Firm-level annual panel regressions of debt issuance and investment activities on EBITDA:

\[Y_{it} = \alpha_i + \eta_t + \beta EBITDA_{it} + X'_{it}\gamma + \epsilon_{it} \]

The regressions are the same as those in Table 4. In Panel A, the outcome variable is net long-term debt issuance; in Panel B, the outcome variable is capital expenditures. Results are presented for several groups not bound by EBCs: large firms without earnings-based covenants, which use cash flow-based lending but have lower debt and are far from constraints; small firms, which have low prevalence of cash flow-based lending and EBCs; low margin firms, which have low prevalence of cash flow-based lending and EBCs; airlines and utilities, which have low prevalence of cash flow-based lending and EBCs. Sample period is 1996 to 2015. Standard errors are clustered by firm and time.

Panel A. Net LT Debt Issuance

<table>
<thead>
<tr>
<th></th>
<th>Large w/o EBCs</th>
<th>Small</th>
<th>Low Margin</th>
<th>Air & Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>EBITDA</td>
<td>-0.059***</td>
<td>0.023</td>
<td>-0.019***</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.027)</td>
<td>(0.007)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>OCF</td>
<td>-0.127***</td>
<td>-0.033***</td>
<td>-0.039***</td>
<td>-0.050</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.011)</td>
<td>(0.010)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>(Q)</td>
<td>0.007***</td>
<td>0.007***</td>
<td>0.004***</td>
<td>0.007***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Past 12m stock ret</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>L.Cash holding</td>
<td>-0.048***</td>
<td>-0.042**</td>
<td>-0.055***</td>
<td>-0.071***</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.024)</td>
<td>(0.016)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Obs</td>
<td>10,137</td>
<td>10,136</td>
<td>20,153</td>
<td>20,129</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.073</td>
<td>0.078</td>
<td>0.029</td>
<td>0.030</td>
</tr>
</tbody>
</table>

Standard errors in parentheses, clustered by firm and time

Panel B. CAPX Investment

<table>
<thead>
<tr>
<th></th>
<th>Large w/o EBCs</th>
<th>Small</th>
<th>Low Margin</th>
<th>Air & Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>EBITDA</td>
<td>0.053***</td>
<td>0.033*</td>
<td>-0.002</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.019)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>OCF</td>
<td>0.024**</td>
<td>0.005</td>
<td>0.011**</td>
<td>0.158***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>(Q)</td>
<td>0.004***</td>
<td>0.004***</td>
<td>0.006***</td>
<td>0.006***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Past 12m stock ret</td>
<td>0.006***</td>
<td>0.006***</td>
<td>0.004***</td>
<td>0.004***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>L.Cash holding</td>
<td>-0.019*</td>
<td>-0.019*</td>
<td>0.005</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.011)</td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Obs</td>
<td>10,683</td>
<td>10,681</td>
<td>21,249</td>
<td>21,222</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.107</td>
<td>0.108</td>
<td>0.043</td>
<td>0.043</td>
</tr>
</tbody>
</table>

Standard errors in parentheses, clustered by firm and time
Table 6: Changes in EBITDA: Accounting Natural Experiment

Cross-sectional instrumental variable regression

\[Y_{it}^{\text{06}} = \alpha + \beta \text{EBITDA}_{it}^{\text{06}} + X'_{it} \gamma + \epsilon_{it} \]

where EBITDA\(_{it}^{\text{06}}\) is EBITDA in fiscal year 2006 (normalized by beginning of year assets), and is instrumented with average option compensation expense (Compustat XINTOPT, normalized by assets) in fiscal years 2002 to 2004. Control variables include sales and OCF (which are not affected by the rule change), as well as three lags of the outcome variable, EBITDA, annual stock returns, and market to book ratio by 2004, as well as all the control variables in Table 4 as of 2004. Industry (Fama-French 12 industries) fixed effects are included; \(R^2 \) does not include fixed effects. Panel A presents the first stage. Panel B presents the IV results. In columns (1) to (3), \(Y \) is net long-term debt issuance in fiscal year 2006; in columns (4) and (6), \(Y \) is capital expenditures in fiscal year 2006. Results are presented separately for large firms with EBCs, large firms without EBCs, and small firms. Robust standard errors in parentheses.

Panel A. First Stage

<table>
<thead>
<tr>
<th>Avg. option comp expense 02-04</th>
<th>Large w/ EBCs</th>
<th>Large w/o EBCs</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-0.857^{***})</td>
<td>(-0.721^{***})</td>
<td>(-0.520^{**})</td>
<td></td>
</tr>
<tr>
<td>(0.212)</td>
<td>(0.134)</td>
<td>(0.208)</td>
<td></td>
</tr>
<tr>
<td>Obs</td>
<td>686</td>
<td>435</td>
<td>727</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

Panel B. IV

<table>
<thead>
<tr>
<th>Net LT Debt Iss</th>
<th>Large w/ EBCs</th>
<th>Large w/o EBCs</th>
<th>Small</th>
<th>Large w/ EBCs</th>
<th>Large w/o EBCs</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBITDA(_{it}^{\text{06}})</td>
<td>0.869^{**}</td>
<td>-0.327</td>
<td>0.225</td>
<td>0.497^{**}</td>
<td>0.014</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.451)</td>
<td>(0.344)</td>
<td>(0.366)</td>
<td>(0.225)</td>
<td>(0.169)</td>
<td>(0.136)</td>
</tr>
<tr>
<td>1st stage (F)</td>
<td>16.39</td>
<td>23.42</td>
<td>9.08</td>
<td>16.39</td>
<td>23.42</td>
<td>9.08</td>
</tr>
<tr>
<td>Obs</td>
<td>686</td>
<td>435</td>
<td>727</td>
<td>686</td>
<td>435</td>
<td>727</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
Table 7: Firm Outcomes and EBITDA: US vs. Japan

Comparison of the sensitivity to EBITDA in US and Japan. Panel A presents summary statistics of the US and Japan sample. The sample covers all large non-financial firms in US and Japan (asset above Compustat median in the respective country). Panel B presents firm-level annual regressions of debt issuance and investment activities on EBITDA:

\[Y_{it} = \alpha_i + \eta_t + \beta \text{EBITDA}_{it} + X'_{it}\gamma + \epsilon_{it} \]

The right hand side variables are the same as those in Table 4. The outcome variables \(Y_{it} \) include change in book debt and capital expenditures in year \(t \), normalized by assets at the end of year \(t - 1 \). Here we do not use net long-term debt issuance from the statement of cash flows because it is not available for Japan. Firm fixed effects and year fixed effects are included (\(R^2 \) does not include fixed effects). Sample period is 1996 to 2015. Standard errors are clustered by firm and time.

Panel A. Summary Statistics

<table>
<thead>
<tr>
<th>Variables</th>
<th>US</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p25</td>
<td>p50</td>
</tr>
<tr>
<td>Log assets</td>
<td>6.20</td>
<td>7.06</td>
</tr>
<tr>
<td>Log market cap</td>
<td>5.97</td>
<td>6.97</td>
</tr>
<tr>
<td>EBITDA</td>
<td>52.83</td>
<td>153.91</td>
</tr>
<tr>
<td>EBITDA/Assets</td>
<td>0.08</td>
<td>0.13</td>
</tr>
<tr>
<td>EBITDA/sales</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>Debt/EBITDA</td>
<td>0.47</td>
<td>1.78</td>
</tr>
<tr>
<td>Debt/assets</td>
<td>0.10</td>
<td>0.26</td>
</tr>
<tr>
<td>Q</td>
<td>0.80</td>
<td>1.12</td>
</tr>
<tr>
<td>MTB</td>
<td>1.20</td>
<td>1.94</td>
</tr>
<tr>
<td>OCF/Assets</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>Cash/assets</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>PPE/assets</td>
<td>0.11</td>
<td>0.24</td>
</tr>
<tr>
<td>Inventory/assets</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>AR/assets</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>Intangible/assets</td>
<td>0.03</td>
<td>0.13</td>
</tr>
<tr>
<td>Δbook debt/Assets</td>
<td>-0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>CAPX/Assets</td>
<td>0.02</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Panel B. Results

<table>
<thead>
<tr>
<th>Change in Book Debt</th>
<th>US Large NF</th>
<th>JPN Large NF</th>
<th>CAPX Investment</th>
<th>US Large NF</th>
<th>JPN Large NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBITDA</td>
<td>0.160***</td>
<td>0.283***</td>
<td>-0.175***</td>
<td>0.099***</td>
<td>0.078***</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.025)</td>
<td>(0.021)</td>
<td>(0.016)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>OCF</td>
<td>-0.194***</td>
<td>-0.329***</td>
<td>-0.045***</td>
<td>0.006***</td>
<td>0.006***</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.020)</td>
<td>(0.008)</td>
<td>(0.006)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Q</td>
<td>0.003*</td>
<td>0.003*</td>
<td>0.013***</td>
<td>0.011***</td>
<td>0.006***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Past 12m stock ret</td>
<td>0.003</td>
<td>0.003</td>
<td>-0.004***</td>
<td>-0.004***</td>
<td>0.005***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>L.Cash holding</td>
<td>0.020</td>
<td>0.023</td>
<td>-0.072***</td>
<td>-0.081***</td>
<td>0.013*</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.016)</td>
<td>(0.017)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Obs</td>
<td>27,936</td>
<td>27,919</td>
<td>20,422</td>
<td>20,338</td>
<td>27,982</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.116</td>
<td>0.123</td>
<td>0.112</td>
<td>0.169</td>
<td>0.129</td>
</tr>
</tbody>
</table>

Standard errors in parentheses, clustered by firm and time

61
Table 8: Summary Statistics: Firm Property Value

Summary statistics of firms in the samples with market value of real estate measures. The column labeled “Method 1” refers to the sample where market value of real estate estimates are available using Method 1 described in Section 4.1 and Appendix D, which follows the traditional procedure (Chaney, Sraer, and Thesmar, 2012). The column labeled “Method 2” refers to the sample where market value of real estate estimates are available using Method 2 described in Section 4.1 and Appendix D, which uses hand collected information from 10-K filings. The column labeled “All w/ RE” includes all non-financial firms with non-zero real estate holdings. Panel A displays statistics for the period 2003 to 2015 (sample period in Table 9), for which we have firm-level measures of asset-based and cash flow-based lending. Panel B displays additional statistics for the period 2007 to 2019 (sample period in Table 10). ∆RE/06−09/assets06 is the gain/loss on 2006 real estate holdings during the crisis, normalized by assets in 2006. ∆P/07−09(HQ) is the percentage change in property price index in headquarters CBSA from 2007 to 2009. The remaining statistics are changes in EBITDA, net long-term debt issuance, and capital expenditures between 2007 and 2009, normalized by assets in 2006.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Method 1</th>
<th>Method 2</th>
<th>All w/ RE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel A. 2002—2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Value RE/assets</td>
<td>0.21</td>
<td>0.13</td>
<td>-</td>
</tr>
<tr>
<td>Market Value RE/market cap</td>
<td>0.21</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td>Book PPE/assets</td>
<td>0.25</td>
<td>0.21</td>
<td>0.25</td>
</tr>
<tr>
<td>EBITDA/l.assets</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>Q</td>
<td>1.15</td>
<td>1.14</td>
<td>1.10</td>
</tr>
<tr>
<td>Debt/assets</td>
<td>0.22</td>
<td>0.19</td>
<td>0.24</td>
</tr>
<tr>
<td>Log assets</td>
<td>7.08</td>
<td>6.30</td>
<td>6.84</td>
</tr>
<tr>
<td>Asset-based lending/debt</td>
<td>0.12</td>
<td>0.25</td>
<td>0.22</td>
</tr>
<tr>
<td>Cash flow-based lending/debt</td>
<td>0.85</td>
<td>0.66</td>
<td>0.74</td>
</tr>
<tr>
<td>Asset-based lending/assets</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Cash flow-based lending/assets</td>
<td>0.16</td>
<td>0.09</td>
<td>0.14</td>
</tr>
<tr>
<td>Net LT Debt issuance/assets</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CAPX/l.assets</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Fraction of large firms</td>
<td>0.76</td>
<td>0.63</td>
<td>0.71</td>
</tr>
<tr>
<td>Fraction w/ EBCs</td>
<td>0.60</td>
<td>0.55</td>
<td>0.56</td>
</tr>
<tr>
<td>Panel B. 2007—2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∆RE/06−09/assets06</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-</td>
</tr>
<tr>
<td>∆P/07−09(HQ)</td>
<td>-0.07</td>
<td>-0.08</td>
<td>-0.07</td>
</tr>
<tr>
<td>∆EBITDA/06−09/assets06</td>
<td>-0.02</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>∆Net LT Debt Iss/06−09/assets06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>∆CAPX/06−09/assets06</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
</tbody>
</table>
Table 9: Corporate Borrowing and Property Collateral Value

Firm-level panel regressions of debt issuance on real estate value:

\[Y_{it} = \alpha_i + \eta_t + \beta \text{RE}_{it} + \gamma X_{it} + \epsilon_{it} \]

The outcome variable \(Y_{it} \) is net long-term debt issuance in columns (1) and (2), change in asset-based lending in columns (3) and (4), change in cash flow-based lending in columns (5) and (6), all normalized by beginning-of-year assets. The main independent variable is \(\text{RE}_{it} \), which is beginning-of-year market value of real estate calculated using two methods described in Section 4.1 and Appendix D. Other independent variables include EBITDA and net cash receipts OCF in year \(t \), Q, cash holdings, book leverage, inventory and receivables, and size (log assets) at the beginning of year \(t \). Firm fixed effects and year fixed effects are included (\(R^2 \) does not include fixed effects). Panel A presents results for all firms where market value of real estate estimates are available. Panel B restricts to the subsample with firms in tradable industries only. Sample period is 2003 to 2015. Standard errors are clustered by firm and time.

Panel A. All Sample Firms

<table>
<thead>
<tr>
<th></th>
<th>Net LT Debt Iss</th>
<th>(\Delta) Asset-Based</th>
<th>(\Delta) CF-Based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>RE (Method 1)</td>
<td>0.030**</td>
<td>0.042**</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.021)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>RE (Method 2)</td>
<td>0.029**</td>
<td>0.030**</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.016)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>EBITDA</td>
<td>0.216***</td>
<td>0.173***</td>
<td>0.151***</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.040)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>OCF</td>
<td>-0.157***</td>
<td>-0.194***</td>
<td>-0.120***</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.043)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Q</td>
<td>0.011**</td>
<td>0.014***</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>L.Cash holding</td>
<td>-0.095***</td>
<td>-0.073***</td>
<td>-0.075***</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.021)</td>
<td>(0.027)</td>
</tr>
</tbody>
</table>

Controls: Y Y Y Y Y Y
Firm FE: Y Y Y Y Y Y
Year FE: Y Y Y Y Y Y
Obs: 4,999 4,551 4,999 4,551 4,999 4,551
\(R^2 \): 0.116 0.120 0.196 0.217 0.193 0.244

Panel B. Tradable Firms Only

<table>
<thead>
<tr>
<th></th>
<th>Net LT Debt Iss</th>
<th>(\Delta) Asset-Based</th>
<th>(\Delta) CF-Based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>RE (Method 1)</td>
<td>0.024</td>
<td>0.060**</td>
<td>-0.090***</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.030)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>RE (Method 2)</td>
<td>0.063**</td>
<td>0.075*</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.040)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>EBITDA</td>
<td>0.182***</td>
<td>0.136***</td>
<td>0.119***</td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td>(0.043)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>OCF</td>
<td>-0.155***</td>
<td>-0.170***</td>
<td>-0.109***</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.045)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Q</td>
<td>0.006</td>
<td>0.016**</td>
<td>-0.005*</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.007)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>L.Cash holding</td>
<td>-0.047</td>
<td>-0.074***</td>
<td>-0.081***</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.027)</td>
<td>(0.030)</td>
</tr>
</tbody>
</table>

Controls: Y Y Y Y Y Y
Firm FE: Y Y Y Y Y Y
Year FE: Y Y Y Y Y Y
Obs: 3,174 2,820 3,174 2,820 3,174 2,820
\(R^2 \): 0.111 0.122 0.212 0.234 0.211 0.195

Standard errors in parentheses, clustered by firm and time.
Table 10: The Great Recession: Unpacking the Property Price Effect

Cross-sectional regression of firm outcomes in the Great Recession and value of firm real estate:

$$\Delta Y_{i}^{07-09} = \alpha + \lambda \Delta RE_{i}^{07-09} + \eta RE_{i}^{06} + \phi \Delta P_{i}^{07-09} + X_{i}\gamma + u_{i}$$

Y_{i}^{07-09} is firm-level outcome from 2007 to 2009: in Panel A ΔY_{i}^{07-09} is the change in net long-term debt issuance between 2007 and 2009, in Panel B Y_{i}^{07-09} is the change in CAPX between 2007 and 2009, normalized by assets by the end of 2006. The main independent variable ΔRE_{i}^{07-09} is the estimated gain/loss on firm i's 2006 real estate holdings during the Great Recession, normalized by assets at the end of 2006. RE_{i}^{06} is the estimated market value of firm i's real estate at the end of 2006, normalized by assets at the end of 2006. ΔP_{i}^{07-09} is the percentage change in property value in firm i's location. The market value of firms' real estate is estimated using two different methods (labeled in the columns), as described in Section 4.1 and Appendix D. Controls include changes in EBITDA and OCF from 2007 to 2009 (normalized by assets by the end of 2006), pre-crisis Q and change in Q from 2007 to 2009, cash holdings, book leverage (debt/assets), inventory, receivables, and size by the end of 2006. Industry (Fama-French 12 industries) fixed effects are included; R^{2} does not include fixed effects. Estimates using both OLS and LAD are presented. Robust standard errors in parentheses.

Panel A. Net LT Debt Issuance

<table>
<thead>
<tr>
<th>ΔLT Debt Isu$^{07-09}$</th>
<th>Method 1</th>
<th>Method 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>LAD</td>
</tr>
<tr>
<td>ΔRE_{i}^{07-09}</td>
<td>-0.121</td>
<td>-0.086</td>
</tr>
<tr>
<td></td>
<td>(0.362)</td>
<td>(0.239)</td>
</tr>
<tr>
<td>RE_{i}^{06}</td>
<td>-0.042</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>ΔP_{i}^{07-09}</td>
<td>0.076</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>(0.082)</td>
<td>(0.045)</td>
</tr>
<tr>
<td>$\Delta EBITDA_{i}^{07-09}$</td>
<td>0.189**</td>
<td>0.160**</td>
</tr>
<tr>
<td></td>
<td>(0.085)</td>
<td>(0.066)</td>
</tr>
<tr>
<td>ΔOCF_{i}^{07-09}</td>
<td>-0.189***</td>
<td>-0.168***</td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>ΔQ_{i}^{07-09}</td>
<td>0.019**</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Q_{i}^{06}</td>
<td>-0.001</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Cash$_{i}^{06}$</td>
<td>-0.018</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Obs</td>
<td>384</td>
<td>384</td>
</tr>
<tr>
<td>R^{2}</td>
<td>0.108</td>
<td>-</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

Panel B. Capital Expenditures

<table>
<thead>
<tr>
<th>$\Delta CAPX_{i}^{07-09}$</th>
<th>Method 1</th>
<th>Method 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>LAD</td>
</tr>
<tr>
<td>ΔRE_{i}^{07-09}</td>
<td>0.086</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(0.120)</td>
<td>(0.104)</td>
</tr>
<tr>
<td>RE_{i}^{06}</td>
<td>0.005</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>ΔP_{i}^{07-09}</td>
<td>0.037</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>$\Delta EBITDA_{i}^{07-09}$</td>
<td>0.101***</td>
<td>0.098***</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>ΔOCF_{i}^{07-09}</td>
<td>-0.032</td>
<td>-0.028*</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>ΔQ_{i}^{07-09}</td>
<td>0.014***</td>
<td>0.008***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Q_{i}^{06}</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Cash$_{i}^{06}$</td>
<td>-0.021</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Obs</td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td>R^{2}</td>
<td>0.262</td>
<td>-</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
Table 11: Property Price Collapse and Firm Investment: US vs. Japan

This table compares results in Gan (2007)’s analysis of Japanese firms during Japan’s property price collapse and similar specifications using US firms during the Great Recession. The specification follows Table 2 column (2) of Gan (2007):

\[\text{CAPX}_{i,\text{post}} = \alpha + \beta \text{RE}_{i,\text{pre}} + X_i'\gamma + v_i \]

CAPX\(_{i,\text{post}}\) is firm \(i\)’s average annual investment rate (CAPX normalized by assets) over a period of time during the property price collapse, and the period is labeled in row “Outcome Period.” RE\(_{i,\text{pre}}\) is firm \(i\)’s real estate holdings prior to the collapse (normalized by pre-collapse assets). Gan (2007) uses the estimated market value of land holdings in 1989. In the US sample, we use the market value of real estate in 2006 measured using methods described in Section 4.1 and Appendix D. Controls \(X_i\) include cash flows (contemporaneous with investment), as well as \(Q\), cash holdings and book leverage (measured prior to the outcome variable). The regression also follows Gan (2007) to include a dummy variable that is equal to one if the firm’s pre-collapse real estate holdings fall into the top industry quartile, and interactions of this dummy with cash flows and cash holdings. Gan (2007) uses least absolute deviation (LAD) estimate, and we report both OLS and LAD estimates.

<table>
<thead>
<tr>
<th>Outcome Period</th>
<th>Japan (Gan 07)</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td></td>
<td>OLS</td>
</tr>
<tr>
<td>RE 1989</td>
<td>-0.165***</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Method 1</td>
<td>-</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Method 2</td>
<td>-</td>
<td>(0.007)</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.
A Asset-Based Lending and Cash Flow-Based Lending

In this section, we explain in detail the categorization of asset-based lending and cash flow-based lending. We first lay out the main types of debt in each category. We then describe our categorization procedure in the aggregate and at the firm level.\footnote{In the categorization, we do not include commercial papers, which are short-term unsecured debt for liquidity purposes.}

Asset-Based Lending

Asset-based lending consists of debt where creditors’ claims are against specific physical assets, and payoffs in default tie to the liquidation value of these assets that serve as collateral. The debt has the following features: 1) it is secured by specific physical assets as collateral; 2) it restricts the size of the debt based on the value of the given collateral, and creditors focus on the liquidation value of the specific assets that serve as collateral; 3) the debt may also have some liquidity tests, but place less emphasis on the borrower’s cash flow performance and related financial covenants.

To understand the payoffs of asset-based lending creditors in bankruptcy, we briefly review US bankruptcy procedures. In bankruptcy, creditors’ claims are grouped into secured and unsecured claims, with secured claims having higher priority. The portion of an asset-based debt up to the liquidation value of its collateral is considered a secured claim, which is the primary source of recovery for asset-based lenders; the rest (“under-collateralized” portion) is treated as an unsecured claim. In Chapter 7, creditors’ payoffs almost entirely come from the liquidation value of the assets; unsecured claims get no or minimal payments. In Chapter 11, creditors’ secured claims (up to the liquidation value of the assets) can be paid in full;\footnote{Section 1129(a)(7)(A) of the Bankruptcy Code requires that for a Chapter 11 reorganization to be approved, it must be established that each secured claim holder would receive at least the amount he/she would get if the borrower were liquidated under Chapter 7.} they may get some additional recovery if they are “under-collateralized” and unsecured claims get some payments, but this portion is typically small in comparison. In sum, the payoffs of asset-based lending creditors primarily depend on the liquidation value of their specific collateral.

The main components of asset-based lending are commercial mortgages and business loans secured by specific assets (often referred to as asset-based loans) such as inventory, accounts receivable, machinery and equipment, and sometimes oil and gas reserves. We also include capital leases, but the total amount is small.\footnote{The term “asset-based lending” is sometimes used narrowly to refer to asset-based loans with inventory and receivables as collateral. Here we use the term more broadly.}

1. Commercial mortgages

Commercial mortgages are corporate debt backed by real estate. For larger firms, the collateral is typically commercial real estate, mostly office buildings/corporate headquarters and sometimes retail properties like shopping malls and hotels. Very small firms may also use residential mortgages.
2. Asset-based loans

Asset-based loans are business (non-mortgage) loans backed by physical assets as collateral, such as inventory, receivable, some machinery and equipment, and some specialized assets such as oil and gas reserves. Asset-based loans specify a “borrowing base,” calculated based on the liquidation value of eligible collateral. Creditors regularly monitor the borrowing base and require that the loan size cannot exceed a fraction of the borrowing base. Asset-based loans can be originated by banks, commonly in the form of secured revolving lines of credit (“revolver”), as well as by finance companies that specialize in lending against specific types of collateral.

3. Capitalized leases

In a capital lease, the leased asset shows up on the asset side of the lessee’s balance sheet, and the lease shows up on the liability side. Capital leases are often treated as debt (Compustat includes capitalized lease as part of the debt variable). This contrasts with operating leases (e.g. rent), in which case the lease and the lease asset do not appear on the lessee’s balance sheet. A lease is recognized as a capital lease when the lessee has exposures to the ownership of the asset, e.g. the lease specifies a transfer of ownership from the lessor to the lessee at the end of the lease period, or that the lease period covers a substantial amount of the life of the asset. US GAAP specifies rules about recognizing capital leases. A well known example of capital lease is used in aircraft financing and studied in Benmelech and Bergman (2011). In this case, a trust purchases the aircraft, leases it to the airline, and finances the purchase by issuing secured notes backed by the aircraft. The trust is sometimes set up by the airline, but is bankruptcy remote. Because the financing of assets in capital leases is often tied to the assets’ liquidation value, we categorize capital leases as asset-based lending. As the size of this portion is relatively small (about $70 billion among Compustat firms), in the following calculations we merge capital leases with asset-based loans.

Cash Flow-Based Lending

Cash flow-based lending consists of debt where creditors’ payoffs primarily come from the value of cash flows from firms’ operations, rather than the liquidation value of physical collateral (both in ordinary course and in bankruptcy). The debt has several features: 1) it is unsecured, or secured by a lien on the entire corporate entity (“substantially all assets,” excluding those pledged for asset-based loans) or by equity, rather than by specific physical assets; 2) they closely monitor borrower’s cash flows (e.g. through financial covenants), rather than the liquidation value of physical assets.

To understand the payoffs of cash flow-based lending creditors in bankruptcy, we again review the US bankruptcy procedures. For cash flow-based debt secured by the entire corporate entity (“substantially all assets”) or by equity, creditors’ collateral value and payoffs

37As mentioned in Section 2.1, when a cash-flow based debt is secured, it means that creditors have priority in bankruptcy, not that creditors seize and liquidate specific collateral.
in Chapter 11 are determined based on the cash flow value from continuing operations.38 Payoffs in Chapter 7 may be affected by the liquidation value of physical assets, but are generally small and Chapter 7 is rare for large firms that extensively use cash flow-based lending (based on CapitalIQ data, more than 90% of large firms’ bankruptcies are resolved through Chapter 11). For unsecured claims, in both Chapter 11 and Chapter 7, payoffs are not closely related to the liquidation value of physical assets (payoffs depend on the cash flow value from continuing operations in Chapter 11, and are minimal in Chapter 7).

There are two main components of cash flow-based lending: corporate bonds and cash flow-based loans.

1. Corporate bonds

Corporate bonds are generally backed by borrowers’ future cash flows and are commonly unsecured. FISD data shows that less than 1% of corporate debt issuance by US non-financial firms is asset backed. About 10% is secured; a very small portion (e.g. industrial revenue bonds) is secured by physical assets, while most secured bonds are cash flow-based (e.g. secured by liens on corporate entity).

2. Cash flow-based loans

Cash flow-based loans comprise of commercial loans that are primarily backed by borrowers’ cash flows. They do not use specific physical assets as collateral. Rather, the collateral (if secured) is a lien on the entire corporate entity ("substantially all assets") or equity of the borrower, and collateral value is calculated based on the borrower’s going-concern cash flow value. Creditors perform detailed cash flow analyses, and closely monitor borrowers’ cash flows. These loans use earnings-based covenants extensively. Term loans in syndicated loans are generally prototypical cash flow-based loans, and are widely used among large firms.

Among large firms, revolving lines of credit ("revolver") can fall into cash flow-based lending as well as asset-based lending. For large firms with high credit quality, revolvers are generally unsecured and fit into cash flow-based lending. For those with higher risks, revolvers are often secured by receivables, inventory, etc. and belong to asset-based loans as discussed above.39 For small firms, revolvers are typically standalone asset-based loans.

A.1 Aggregate Composition

In the following, we estimate the share of asset-based lending and cash flow-based lending among aggregate US non-financial corporate debt outstanding. Here we primarily rely on

38Specifically, in Chapter 11 different parties settle on a reorganization plan under court supervision and approval, which is associated with a calculation of going-concern cash flow value of the firm. The value is then distributed to creditors according to priority.

39However, due to institutional reasons the asset-based revolvers are generally bundled together with prototypical cash flow-based loans (e.g. term loans) in a single loan package, and share the earnings-based covenants.
aggregate sources, so the estimates are not confined to public firms.

Asset-Based Lending: around 20% of debt outstanding

1. Commercial mortgages
 - Share in total non-financial debt outstanding: 7%
 - Data sources: Flow of Funds
 - Calculation: We use commercial mortgage outstanding from the Flow of Funds, which is around $0.6 trillion.

2. Asset-based loans:
 - Share in total non-financial debt outstanding: 12%
 - Data sources: DealScan, ABL Advisor, Shared National Credits Program (SNC), Small Business Administration (SBA), Flow of Funds, Compustat
 - Calculation: We first estimate asset-based bank loans to large firms. For this part, we focus on the portion of syndicated loans (representative of loans to large firms) that are asset-based, using data from DealScan, ABL advisor, and SNC. We proceed in two steps. We first estimate the share of asset-based loans in syndicated loans, using loan issuance data from DealScan and ABL Advisor. In particular, ABL Advisor reports the volume of issuance in DealScan that can be classified as asset-based loans. We can compare this value to total loan issuance in DealScan. We can alternatively directly calculate using DealScan data the share of loan issuance with asset-based provisions (i.e. borrowing base requirements), and the results are very similar. The estimated share of asset based-based loans is about 5% (annual syndicated loan issuance is $1,500B to $2,000B, of which $60B to $100B is asset-based). We then turn to the amount of syndicated loans outstanding from the SNC report (amount outstanding is not available in DealScan), which is about $3 trillion. Taken together, outstanding asset-based loans from syndicated loans are about $0.15 trillion.

We then estimate asset-based bank loans to small businesses. For this part, we use outstanding loans to small businesses compiled by the SBA based on Call Reports. These are loans under $1 million, and we categorize all small business lending as asset-based loans. A small fraction of small business lending can also be cash flow-loans, but detailed loan-level information is much harder to get and we take a conservative approach. Total loans outstanding to small businesses is about $0.6 trillion.

For asset-based loans originated by finance companies, we use the Flow of Funds data and estimate the outstanding amount to be about $0.3 trillion.

For capitalized leases, the total amount in Compustat non-financial firms is around $70 billion, and we estimate the total amount in all non-financial firms to be around $0.1 trillion.
Putting these parts together, we get an estimate of asset-based loans of around $1.2 trillion. There may be some commercial loans to medium sized firms missing (not covered by SNC/DealScan and finance company loans, but not necessarily small business loans). To the extent these loans are more likely to be asset-based, there might be potential under-estimation. At the same time, the small business loans can include many loans to non-corporate entities (sole proprietorship, partnership) or some mortgages, leading to potential over-estimation. Nonetheless, in either case the magnitude should be small.

Cash Flow-Based Lending: around 80% of debt outstanding

1. Corporate bonds
 - Share in total non-financial corporate debt outstanding: 49%
 - Data source: Flow of Funds, FISD, CapitalIQ
 - Calculation: According to Flow of Funds data, corporate bond outstanding by US non-financial firms is about $4.5 trillion. Based on FISD and CapitalIQ data, which provide more information on the structure of individual corporate bonds, only a small portion of corporate bonds are backed by specific physical assets (<2%). Thus in the aggregate, we categorize all corporate bonds into cash flow-based lending.

2. Cash flow-based loans
 - Share in total non-financial corporate debt outstanding: 32%
 - Data sources: DealScan, ABL Advisor, SNC
 - Calculation: We approximate the amount of cash flow-based loans using the cash flow-based portion of syndicated loans, which cover the vast majority of cash flow-based loans by dollar volume. We use the procedure described above: we find that around 5% of syndicated loans are asset-based and 95% are cash flow-based, and then multiply the share with the size of syndicated loans outstanding (roughly $3 trillion).

Table A1: Summary of Asset-Based Lending and Cash Flow-Based Lending

<table>
<thead>
<tr>
<th>Debt Type</th>
<th>Category</th>
<th>Amount ($ Tr)</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial mortgages</td>
<td>Asset-based lending</td>
<td>$0.6</td>
<td>6.5%</td>
</tr>
<tr>
<td>Asset-based loans</td>
<td>Asset-based lending</td>
<td>$1.2</td>
<td>13%</td>
</tr>
<tr>
<td>Corporate bond</td>
<td>Cash flow-based lending</td>
<td>$4.5</td>
<td>48%</td>
</tr>
<tr>
<td>Cash flow-based loans</td>
<td>Cash flow-based lending</td>
<td>$3</td>
<td>32%</td>
</tr>
</tbody>
</table>
A.2 Firm-Level Composition

We now discuss the firm-level composition of asset-based lending and cash flow-based lending, using debt-level data for non-financial firms in Compustat/CapitalIQ.

We begin with debt-level information from CapitalIQ, available since 2002. For each debt, CapitalIQ provides information about the amount outstanding, whether it is secured, and descriptions of the debt (e.g. debt type, collateral structure, lender, etc.). CapitalIQ is very helpful because it covers all types of debt and tracks the amount outstanding for each debt in each firm-year, which facilitates a comprehensive analysis. CapitalIQ assembles these data from a number of firm filings. It covers about 75% of Compustat firms, and total debt value for each firm matches well with Compustat data. We supplement CapitalIQ data with additional information on debt attributes from DealScan, FISD, and SDC Platinum.

We categorize firms’ debt into four groups: 1) asset-based lending, 2) cash flow-based lending, 3) personal loans, 4) miscellaneous and unclassified borrowing. We proceed in several steps:

1. We classify a debt as asset-based lending if

 • the debt information contains the following key words (and their variants): borrowing base, mortgage, real estate/building/property, equipment, machine, receivable, inventory, working capital, automobile/vehicle, aircraft, asset-based, capital lease, SBA (small business administration), oil/drill/rig, reserve-based, factoring, industrial revenue bond, fixed asset, finance company, construction, project finance;
 • it is a revolver and is not explicitly unsecured or designated cash flow-based in debt documents.

2. We classify a debt as personal loan if

 • the lender is an individual (Mr./Ms., etc);
 • it is from directors/executive/chairman/founder/shareholders/related parties.

3. We assign a debt to the miscellaneous/unclassified category if it is

 • borrowing from governments (not specifically asset-based);
 • borrowing from vendor/seller/supplier/landlord;
 • insurance-related borrowing;
 • borrowing from parent or affiliates;
 • pollution control bonds.

4. We classify a debt as cash flow-based lending if it does not belong to any of the categories above and
• the debt is unsecured/un-collateralized, is a “debenture”, or explicitly says “cash flow-based”/“cash flow loan”;

• it contains the following key words and their variants, which are representative of cash flow-based loans: substantially all assets, first lien/second lien/third lien, term facility/term loan facility/term loan a, b, c..., syndicated, tranche, acquisition line, bridge loan;

• it is a bond or it contains standard key words for bonds, such as senior subordinated, senior notes, x% notes due, private placement, medium term notes;

• it is a convertible bond.

5. We assign all remaining secured debt to asset-based lending to be conservative.

Table A2 shows the median firm-level share of asset-based lending and cash flow-based lending for small firms (assets below Compustat median in a given year), large firms (assets above Compustat median), and rated firms (generally even larger) in Compustat.

<table>
<thead>
<tr>
<th></th>
<th>Large Firms</th>
<th>Rated Firms</th>
<th>Small Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset-Based Lending</td>
<td>12.4%</td>
<td>8.0%</td>
<td>61.0%</td>
</tr>
<tr>
<td>Cash Flow-Based Lending</td>
<td>83.0%</td>
<td>89.0%</td>
<td>7.2%</td>
</tr>
</tbody>
</table>

In Table 2, we show that the amount of asset-based lending a firm has is positively correlated with the amount of physical assets, while the amount of cash flow-based lending is not (generally negatively correlated with physical assets). The results confirm that cash flow-based lending does not appear to depend on the value of physical assets.
B Earnings-Based Borrowing Constraints

B.1 Specifications of Earnings-Based Covenant

Table A3: Variants of Earnings-Based Covenants

This table lists the main variants of earnings-based covenants and the construction using Compustat variables compiled by Demerjian and Owens (2016). The first column displays the covenant type, which is reported in DealScan data, and the second column describes the form of the covenant. The third column shows how to compute the metric used in each type of covenant using Compustat data. The fourth column tabulates the fraction of DealScan loans to US non-financial that have the specific type of covenant. The final column shows a check of the Compustat formula. For some types of covenants, the formula and details of the components may not be fully standardized across different debt contracts. Demerjian and Owens (2016) study a subset of DealScan loans where details of the covenant formula are provided by the Tearsheets dataset, and they calculate the frequency of cases where the Compustat formula listed is matches with details provided by the Tearsheets data.

<table>
<thead>
<tr>
<th>Covenant Type</th>
<th>Standard definition</th>
<th>Compustat implementation</th>
<th>Fraction of loans</th>
<th>Exact match in Demerjian and Owens (2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Debt-to-EBITDA</td>
<td>Debt/EBITDA</td>
<td>(DLTT+DLC)/EBITDA</td>
<td>29.7%</td>
<td>91.0%</td>
</tr>
<tr>
<td>Max. Senior Debt-to-EBITDA</td>
<td>Senior Debt/EBITDA</td>
<td>(DLTT+DLC–DS)/EBITDA</td>
<td>5.2%</td>
<td>89.4%</td>
</tr>
<tr>
<td>Min. Interest Coverage</td>
<td>EBITDA/Interest Expense</td>
<td>EBITDA/XINT</td>
<td>20.8%</td>
<td>76.3%</td>
</tr>
<tr>
<td>Min. Cash Interest Coverage</td>
<td>EBITDA/Interest Paid</td>
<td>EBITDA/INTPN</td>
<td>0.7%</td>
<td>76.8%</td>
</tr>
<tr>
<td>Min. Debt Service Coverage</td>
<td>EBITDA /(Interest Expense+ST Debt)</td>
<td>EBITDA/(XINT+L.DLC)</td>
<td>4.3%</td>
<td>37.9%</td>
</tr>
<tr>
<td>Min. Fixed Charge Coverage</td>
<td>EBITDA/(Interest Expense+ST Debt+Rent Expense)</td>
<td>EBITDA/(XINT+L.DLC+XRENT)</td>
<td>18.5%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Min. EBITDA</td>
<td>EBITDA</td>
<td>EBITDA</td>
<td>5.0%</td>
<td>97.4%</td>
</tr>
</tbody>
</table>
B.2 Other Earnings-Based Constraints

This section provides more information about other forms of earnings-based borrowing constraints discussed in Section 2.2. As mentioned in Section 2.2, when a firm wants to raise debt, it can be hard to surpass a reference level of debt to EBITDA ratio. This type of credit market norms are most pronounced in the leveraged loan market and especially relevant for non-investment grade borrowers.

Figure A1 below shows a time series of reference debt to EBITDA ratio in the leveraged loan market for large firms. It is an indicator of the mean debt to EBITDA ratio lenders are willing to allow when large firms raise debt. Unlike financial covenants, this is primarily a market reference, and not legally binding. Nonetheless, to the extent that firms need to comply with such norms when they borrow, their debt to EBITDA ratio may end up being sensitive to the market norm.

Table A4 shows the sensitivity of firm-level debt to EBITDA to the reference level of Debt to EBITDA, based on a regression:

\[
\text{Debt/EBITDA}_{it} = \alpha + \theta \text{Ref Debt/EBITDA}_t + X'_{it} + Z'_{it} + v_{it} \quad (A1)
\]

where \(\text{Debt/EBITDA}_{it}\) is firm \(i\)’s debt to EBITDA at time \(t\), \(\text{Ref Debt/EBITDA}_t\) is the reference debt to EBITDA at time \(t\) (which LCD compiles based on the mean debt to EBITDA ratio of firms completing leveraged loan deals during period \(t\)), \(X_{it}\) is firm-level controls, and \(Z_t\) is macro controls including interest rates and business cycle proxies (credit spread, term spread, GDP growth). The regressions are separately estimated for firms in different ratings categories: those below the investment grade cut-off (BB+ and below), and those above the investment grade cut-off (BBB- and above). We show the sensitivity to the reference debt/EBITDA at both annual and quarterly frequencies.

Figure A1: Debt/EBITDA Reference Level for Large Issuers
Table A4: Sensitivity to Reference Debt/EBITDA

This table summarizes the regression coefficient θ from:

$$\text{Debt/EBITDA}_{it} = \alpha + \theta \text{Ref Debt/EBITDA}_t + X_{it}\gamma + Z_{it}\rho + v_{it}$$

where Debt/EBITDA$_{it}$ is firm i’s debt to EBITDA at time t, Ref Debt/EBITDA is the reference debt to EBITDA at time t. Firm level controls X_{it} include lagged debt/EBITDA, as well as Q, past 12 months stock returns, and book leverage (debt/asset), cash holdings, accounts receivable, inventory, book PPE, log assets at the end of time $t - 1$. Macro controls include term spread (spread between 10-year Treasury and 3-month Treasury), credit spreads (spread between BAA bond yield and 10-year Treasury yield, as well as spread between high yield bond yield and 10-year Treasury yield), and real GDP growth at time t. For the annual regression, firm-level debt to earnings ratio is debt in year t over EBITDA in year t, and observations where EBITDA is negative are dropped; reference debt to EBITDA is the annual average in year t. For the quarterly regressions, firm-level debt to earnings ratio is debt in quarter t over total EBITDA in the past 12 months, and observations where past 12 month EBITDA is negative are dropped; reference debt to EBITDA is measured in quarter t. We also exclude firms that are in violation of earnings-based covenants (earnings-based covenant binding) at the beginning of time t. Standard errors are clustered by both firm and time.

<table>
<thead>
<tr>
<th></th>
<th>Non IG</th>
<th>IG</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All BB</td>
<td>BB+</td>
<td>BBB-</td>
<td>All BBB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>0.55</td>
<td>0.61</td>
<td>0.47</td>
<td>0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.242)</td>
<td>(0.274)</td>
<td>(0.250)</td>
<td>(0.483)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarterly Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>0.15</td>
<td>0.10</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.049)</td>
<td>(0.044)</td>
<td>(0.035)</td>
<td>(0.040)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C Accounting

C.1 EBITDA and OCF

Definition and Construction

1. EBITDA
 - Compustat variable: EBITDA (equivalently OIBDP)
 - EBITDA is a measure of operating earnings
 - EBITDA = revenue - operating expenses = sales (SALE) - cost of goods sold (COGS) - selling, general and administrative expense (XSGA)
 - EBITDA does not include capital expenditures (CAPX), which is separately accounted as cash flows from investment activities. EBITDA does include R&D expenses, which count towards operating expenses (included in COGS and XSGA); R&D spending is required to be immediately expensed.

2. OCF
 - Compustat variable: OANCFC + XINT
 - XINT: Interest Expenses. The Compustat variable OANCFC subtracts interest expenses. We add them back to avoid mechanical correlations with debt issuance.
- OCF is a measure of the net cash receipts (inflows minus outflows) a firm gets from operating activities (as opposed to investing activities or financing activities).

- OCF is typically calculated via the indirect method, i.e. starting with earnings and add back/subtract non-cash components. Based on Compustat variable definitions, the following relation holds:

\[
OCF = \text{EBITDA} + (\text{NOPI} + \text{SPI}) + \text{SPPE} - (\text{TAX} - \text{DTAX} - \Delta \text{ATAX}) \\
+ \Delta \text{AP} - \Delta \text{AR} - \Delta \text{INV} + \Delta \text{UR} - \Delta \text{PX} + \text{OCFO} \tag{A2}
\]

- NOPI: Nonoperating Income (e.g. dividend, interest, rental, royalty income).
- SPI: Special Item (e.g. windfalls, natural disaster damages, earnings from discontinued operations, litigation reserves). Based on the Compustat definition, variables XIDOC (cash flows from extraordinary items & discontinued operations) and MII (noncontrolling interest) are also added back.
- SPPE: Sale of Property, Plant and Equipment.
- TXT: Total Income Taxes; TXD: Deferred Taxes; ΔTXA: Changes in Accrued Taxes. TXT − TXD − ΔTXA is cash payment of taxes.
- ΔAP: Changes in Accounts Payable.
- ΔAR: Changes in Accounts Receivable.
- ΔINV: Changes in Inventory.
- ΔUR: Changes in unearned revenue. For instance, if a firm receives cash for purchases of goods and services to be delivered in the future (e.g. membership, subscription, gift card), it does not record any earnings but gets more cash. This leads to an increase in unearned revenue. ΔPX: Changes in prepaid expenses. Similarly, if a firm pays for goods or services to be delivered to it in the future (e.g. insurance), it does not record an expense but has less cash. This leads to an increase in prepaid expenses. OCFO: other miscellaneous cash flows from operations. See Compustat definitions of OANCF.

- OCF does not include capital expenditures (CAPX), which is separately accounted in cash flows from investment activities. OCF does include R&D expenses, which count towards operating expenses (included in COGS and XSGA); R&D spending is required to be immediately expensed. OCF does not include the effect of payouts and securities issuance, which are separately accounted in cash flows from financing activities.

3. Difference between EBITDA and OCF

- There are two main differences between the EBITDA and OCF variables.
First, OCF takes into account the cash receipts due to non-operating income, asset sales, windfalls, minority interests, etc., which are items not included in EBITDA.

Second, due to accounting principles, earnings recognition and cash payments may not happen concurrently. Cash payments may occur before, at the same time, or after earnings recognition. For instance, it is customary for companies to make sales and receive payments from customers later. Companies may also receive payments first before delivering goods and services (e.g. customers purchase gift cards and only use them later, or customers purchase membership/subscription that they use later).

Discussion

In the baseline regression of Section 3.2, we have a specification that controls for OCF to address the potential impact of cash receipts on firms’ borrowing and investment:

\[Y_{it} = \alpha_i + \eta_t + \beta \text{EBITDA}_{it} + \kappa \text{OCF}_{it} + X'_{it} \gamma + \epsilon_{it} \]

In this specification with both EBITDA and OCF, we would like to make sure that the coefficient on EBITDA (\(\beta \)) reflects the impact of the EBC channel (i.e. \(\partial b^*/\partial \pi \) in Proposition 1), and the coefficient on OCF (\(\kappa \)) reflect the impact of the internal funds channel (i.e. \(\partial b^*/\partial w \) in Proposition 1).

Coefficients on EBITDA. Based on the definition of EBITDA above, variations in EBITDA come from either sales or operating expenses. Whether cash associated with sales/expenses comes in advance, concurrently, or later does not affect EBITDA per se.

For the coefficient on EBITDA \(\beta \), consider two firms that end up with the same OCF, but have different EBITDA. From Equation (A2), we know the variations in EBITDA are accompanied by differences in the second to last terms of Equation (A2).

- For example, consider firm A with EBITDA 20, NOPI 0, and OCF 20, and firm B with EBITDA 10, NOPI 10, and OCF 20. They happen to have the same OCF and different EBITDA. There are accompanying differences in NOPI (10).

To make sure the coefficient on EBITDA reflects the impact of the EBC channel, we need to make sure the accompanying differences themselves do not influence borrowing and investment (through mechanisms other than the EBC channel) and cause omitted variable problems. In the NOPI case above, this issue does not seem obvious: holding OCF constant, it is not obvious why having less NOPI (firm A) would lead to more borrowing and investment. The issue could be more relevant in several other cases, which we discuss below.

- Can changes in accounts receivables directly affect borrowing and investment and be an OVB?
We first consider changes in accounts receivable ΔAR. To illustrate, suppose firm A has EBITDA 20, ΔAR 0 (all the earnings are concurrently received in cash), and OCF 20, while firm B has EBITDA 30, ΔAR 10 (20 of the EBITDA is received in cash, while 10 is booked as receivable), and OCF 20.

One concern is that firm B expects to receive 10 in the next period, and can pledge the receivable as collateral to borrow more. Even in the absence of EBCs, if firms borrow by pledging receivable, we may see firm B borrow more than firm A.\(^{40}\) Such borrowing based on receivable is generally short-term debt, while we focus on the issuance of long-term debt. In addition, such borrowing is also secured debt, while our results also hold among unsecured debt.

- Can changes in inventory directly affect borrowing and investment and be an OVB?

Another case worth considering is changes in inventory. Changes in inventory ΔINV has several components: $\Delta INV = INVP_{t+1}^t - INVP_{t-1}^t$.

- $INVP_{t-1}^t$ denotes inventory purchased before period t used in period t production. $INVP_{t-1}^t$ affects EBITDA of period t (counts toward cost of goods sold in period t), but does not affect OCF in period t.

- $INVP_{t+1}^t$ denotes inventory purchased in period t for future production. $INVP_{t+1}^t$ affects OCF in period t but does not affect EBITDA in period t.

As shown above, changes in the inventory balance can come from two sources: 1) usage of old inventory, and 2) purchase of inventory for future production. There are two corresponding situations to consider.

The first situation focuses on usage of old inventory. To illustrate, suppose firm A has sales 20 and $\Delta INV = INVP_{t+1}^t - INVP_{t-1}^t = 0 - 0 = 0$, so its EBITDA is 20 and OCF is 20. Firm B has sales of 20 and $\Delta INV = INVP_{t+1}^t - INVP_{t-1}^t = 0 - 10 = -10$, so its EBITDA is 10 and OCF is 20. The difference between firm A and firm B is that firm A does not use old inventory ($INVP_{t-1}^t = 0$), while firm B uses old inventory ($INVP_{t-1}^t = 10$). In this situation, firm A and firm B have the same OCF and different EBITDA; the difference in EBITDA is accompanied by firm A using less old material. It is not obvious why such differences will directly affect borrowing and investment, except we need to be careful about the investment opportunity issue which is addressed extensively in Section 3.2.

The second situation focuses on purchases of new inventory. To illustrate, suppose firm A has sales of 20 and $\Delta INV = INVP_{t+1}^t - INVP_{t-1}^t = 0 - 0 = 0$, so its EBITDA is 20 and OCF is 20. Firm B has sales of 30 and $\Delta INV = INVP_{t+1}^t - INVP_{t-1}^t = 10 - 0 = 10$, so its EBITDA is 20 and OCF is 10. The difference between firm A and

\(^{40}\)This issue with accounts receivable could exist even when we do not control for OCF. Consider a limiting case where all sales are paid by receivable rather than cash. Then variations in sales are entirely variations in receivable.
firm B is that firm A does not purchase additional inventory for future production \((\text{INVP}_{t+1} = 0)\), while firm B purchases additional inventory for future production \((\text{INVP}_{t+1} = 10)\). In this situation, firm A and firm B have the same OCF and different EBITDA; the difference in EBITDA is accompanied by purchases of inventory for future production. To the extent that investment opportunities are well measured, holding OCF fixed, inventory purchases would not add additional information about borrowing and investment decisions; the investment opportunity issue is addressed extensively in Section 3.2.

Coefficients on OCF. Based on the definition of OCF above, variations in OCF are affected by the timing of payments and by payments associated with other forms of earnings not included in EBITDA.

For the coefficient on OCF \(\kappa\), consider two firms that have the same EBITDA, but different OCF. From Equation (A2), we know the differences in OCF are accompanied by differences in the second to last terms of Equation (A2).

- For example, suppose firm A and firm B both have EBITDA 20, while firm A has NOPI 10 and firm B has NOPI 0, then firm A will have OCF 30 and firm B will have OCF 20.

To make sure the coefficient on OCF reflects the impact of the internal funds channel, we need to make sure the accompanying differences themselves do not influence borrowing and investment (through mechanisms other than the internal funds channel) and cause omitted variable problems. In the NOPI case above, this issue does not seem obvious: holding EBITDA constant, it is not obvious why having more NOPI (firm A) would lead to less borrowing and more investment other than through the internal funds channel. The issue could be more relevant in several other cases, which we discuss below.

- Can changes in accounts receivable directly affect borrowing and investment and be an OVB?

To illustrate, consider a case about accounts receivable: suppose firm A and firm B have the same EBITDA, and firm A receives cash while firm B gets receivables. Firm B may pledge the receivables as collateral to borrow more. However, as discussed above, such borrowing based on receivables is generally short-term debt, while we focus on the issuance of long-term debt. In addition, such borrowing is also secured debt, while our results also hold among unsecured debt.

- Can changes in accounts payable directly affect borrowing and investment and be an OVB?

To illustrate, suppose firm A and firm B have the same EBITDA, but firm A decides to pay its suppliers more slowly. In this case, firm A will have an increase in \(\Delta \text{AP}\) and more OCF.
In this case, firm A now has more internal funds and may raise less money from capital markets. To the extent that borrowing from suppliers (i.e. increasing payable) is less costly than external financing in capital markets, stretching accounts payable is one way of generating internal funds. This is the same as the internal funds channel discussed above. Holding EBITDA constant, it is not obvious why having more accounts payable would lead to less borrowing and more investment other than through the channel of increasing internal funds.

- Can changes in inventory directly affect borrowing and investment and be an OVB?

To illustrate, suppose firm A and firm B have the same EBITDA, but firm A purchases more inventory for future production (INVP_{t+1}), then firm A will have lower OCF.

In this case, firm A now has less internal funds and may raise more money from capital markets to finance the inventory purchases. This is the same as the internal funds channel discussed above. Holding EBITDA constant, it is not obvious why having more inventory purchase would lead to more borrowing and less investment other than through the channel of increasing internal funds. To further confirm, we also perform checks controlling for inventory purchases in Supplementary Appendix Table IA5. The OCF coefficients stay similar as before.

C.2 Earnings Management

In the baseline regressions in Section 3.2, one driver of variations in EBITDA could be earnings management. For example, when EBCs become binding, firms may recognize earnings more aggressively (e.g. under-estimate operating expenses, or over-estimate sales or accounts receivable) so they can keep more debt. The survey of managers by Graham et al. (2005) suggests such earnings management can happen when firms are close to violating debt covenants.

How does the possibility of earnings management affect the interpretation of the baseline regressions in Section 3.2? The objective in these tests is to study the sensitivity of external borrowing to accounting EBITDA. Whether the EBITDA comes from “true” operating earnings or from earnings management, both affect accounting EBITDA and can help us estimate the sensitivity of borrowing to accounting EBITDA.

The earnings management motive also speaks directly to the impact of accounting earnings on borrowing. Due to EBCs, current EBITDA plays a key role in firm’s ability to borrow. Thus managers sometimes resort to earnings management to boost EBIDA and debt capacity.

D Estimates of Market Value of Firm Real Estate

Because accounting data only report the value of firm properties at historical cost, not market value, we need to estimate or collect additional data to know the market value of
firm real estate. We use three different methods, which are described in detail below.

D.1 Method 1: Traditional Estimates

The first estimate we use builds on Chaney, Sraer, and Thesmar (2012). Firm real estate include buildings, land and improvements, and construction in progress. The steps to estimate market value are as follows:

1. We estimate the market value of firm real estate in 1993 RE^{93}. After 1993, the net book value and accumulated depreciation of real estate assets (buildings, land and improvements, and construction in progress) are no longer reported.
 - We estimate the average purchase year of firm real estate as in Chaney, Sraer, and Thesmar (2012). We compare accumulated depreciation and gross book value to estimate the fraction depreciated by 1993. Assuming linear depreciation and a 40 year depreciation horizon, we estimate the purchase year to be 1993 minus (percent depreciated times 40).
 - We estimate the market value in 1993 by inflating the net book value in 1993 (which is assumed to reflect the nominal value benchmarked to the purchase year) by the cumulative property price inflation between the purchase year and 1993. The cumulative property price inflation is calculated using state-level residential real estate index between 1975 and 1993 and CPI inflation before 1975 as in Chaney, Sraer, and Thesmar (2012).
 - If the book value of real estate or the net book value of PPE is zero in 1993, we enter zero as the market value of firm real estate in 1993.

2. We estimate the market value of firm real estate for each year after 1993.
 - Starting from 1994, we estimate the market value of firm real estate from two parts: appreciation of existing holdings and acquisition/disposition of holdings. Specifically we calculate $\text{RE}_{i,t+1} = \text{RE}_{i,t} \times P_{it+1}/P_{it} \times 97.5\%$ plus change in the gross book value of real estate, where P_{it} is the property price index in firm i’s headquarters county in year t and real estate is assumed to depreciate at 2.5% per year (again following a depreciation horizon of 40 years).
 - If in a given year, the firm’s gross book value of real estate or net book value of PPE becomes zero, we assume the firm no longer owns real estate and reset the market value of real estate to zero.

By using P_{it} as the property price index in firm i’s headquarter county, this method assumes that most of the real estate owned by a firm is near its headquarter county. The
premise of this assumption is that corporate offices or properties near the headquarter are the most common type of owned real estate. Chaney, Sraer, and Thesmar (2012) verify that this is not an unreasonable assumption. As discussed in Section 4, we also find this assumption to be plausible for most US non-financial firms.

D.2 Method 2: Property Information from Firm 10-K Filings

In US non-financial firms’ 10-K filings, Item 2 is called “Properties” where firms discuss property holdings and leases. A number of firms provide detailed information about the location, size, ownership, and usage of their properties.

For example, AVX Corporation’s 2006 10-K filing provides the following table of properties in the US (a large international manufacturer of electronic connectors with 10,000 employees, headquartered in Myrtle Beach, SC):

Properties of AVX Corporation

<table>
<thead>
<tr>
<th>Location</th>
<th>Size</th>
<th>Type of Interest</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myrtle Beach, SC</td>
<td>535,000</td>
<td>Owned</td>
<td>Manufacturing/Research/HQ</td>
</tr>
<tr>
<td>Myrtle Beach, SC</td>
<td>69,000</td>
<td>Owned</td>
<td>Office/Warehouse</td>
</tr>
<tr>
<td>Conway, SC</td>
<td>71,000</td>
<td>Owned</td>
<td>Manufacturing/Office</td>
</tr>
<tr>
<td>Biddeford, ME</td>
<td>73,000</td>
<td>Owned</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>Colorado Springs, CO</td>
<td>15,000</td>
<td>Owned</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>Atlanta, GA</td>
<td>49,000</td>
<td>Leased</td>
<td>Office/Warehouse</td>
</tr>
<tr>
<td>Olean, NY</td>
<td>113,000</td>
<td>Owned</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>Raleigh, NC</td>
<td>203,000</td>
<td>Owned</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>Sun Valley, CA</td>
<td>25,000</td>
<td>Leased</td>
<td>Manufacturing</td>
</tr>
</tbody>
</table>

For another example, Starbucks’ 2006 10-K filing writes:

The following table shows properties used by Starbucks in connection with its roasting and distribution operations:

Properties of Starbucks Corporation

<table>
<thead>
<tr>
<th>Location</th>
<th>Size</th>
<th>Owned or Leased</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kent, WA</td>
<td>332,000</td>
<td>Owned</td>
<td>Roasting and distribution</td>
</tr>
<tr>
<td>Kent, WA</td>
<td>402,000</td>
<td>Leased</td>
<td>Warehouse</td>
</tr>
<tr>
<td>Renton, WA</td>
<td>125,000</td>
<td>Leased</td>
<td>Warehouse</td>
</tr>
<tr>
<td>York County, PA</td>
<td>365,000</td>
<td>Owned</td>
<td>Roasting and distribution</td>
</tr>
<tr>
<td>York County, PA</td>
<td>297,000</td>
<td>Owned</td>
<td>Warehouse</td>
</tr>
<tr>
<td>York County, PA</td>
<td>42,000</td>
<td>Leased</td>
<td>Warehouse</td>
</tr>
<tr>
<td>Carson Valley, NV</td>
<td>360,000</td>
<td>Owned</td>
<td>Roasting and distribution</td>
</tr>
<tr>
<td>Portland, OR</td>
<td>80,000</td>
<td>Leased</td>
<td>Warehouse</td>
</tr>
<tr>
<td>Basildon, United Kingdom</td>
<td>141,000</td>
<td>Leased</td>
<td>Warehouse and distribution</td>
</tr>
<tr>
<td>Amsterdam, Netherlands</td>
<td>94,000</td>
<td>Leased</td>
<td>Roasting and distribution</td>
</tr>
</tbody>
</table>

The Company leases approximately 1,000,000 square feet of office space and owns a 200,000 square foot office building in Seattle, Washington for corporate administrative purposes. As of October 1, 2006, Starbucks had more than 7,100 Company-operated retail stores, of which nearly all are located in leased premises. The Company also leases space in approxi-
mately 120 additional locations for regional, district and other administrative offices, training facilities and storage, not including certain seasonal retail storage locations.

For a final example, Microsoft’s 2006 10-K filing writes:

Our corporate offices consist of approximately 11.0 million square feet of office building space located in King County, Washington: 8.5 million square feet of owned space that is situated on approximately 500 acres of land we own in our corporate campus and approximately 2.5 million square feet of space we lease. We own approximately 533,000 square feet of office building space domestically (outside of the Puget Sound corporate campus) and lease many sites domestically totaling approximately 2.7 million square feet of office building space...We own 63 acres of land in Issaquah, Washington, which can accommodate 1.2 million square feet of office space and we have an agreement with the City of Redmond under which we may develop an additional 2.2 million square feet of facilities at our campus in Redmond, Washington. Microsoft is headquartered in Redmond (King County), WA.

We train assistants to read the 10-K filings and record the location, size, and usage for owned properties in the US; we also record whether the firm owns other properties for which these information are not available. We then match the properties with median property price per square footage in their respective counties using data from Zillow (we first try matching based on county, then city/metro area, and finally state if none of the previous matches were available). We use Zillow price if the property is commercial or retail (office, store, restaurant, hotel, casino). We multiply the Zillow price by 0.85 if the property is a mixture of manufacturing and office (often happens to headquarters of manufacturing firms); by 0.7 if it is manufacturing (facilities, warehouse, distribution center). For firms’ owned land, we use state-level land price estimates.

E Borrowing Constraints and Financial Acceleration

This appendix analyzes how financial acceleration dynamics are influenced by the form of firms’ borrowing constraints. We consider an environment similar to *Kiyotaki and Moore* (1997). We study both collateral-based constraints (a firm’s borrowing capacity depends on the liquidation value of physical assets) as the original study, and earnings-based constraints (a firm’s borrowing capacity depends a multiple of its earnings) analogous to the EBCs we document in Section 2. We compare the equilibrium impact of a shock to productive firms’ internal funds (i.e. net worth)\(^{41}\) in these two scenarios. The results show that earnings-based constraints lead to much more muted initial response in productive firms’ capital and aggregate output, but may lead to slightly more persistence in the model.

\(^{41}\)This is the same shock considered by *Kiyotaki and Moore* (1997).
E.1 Set-Up

Environment. The environment is similar to the baseline environment studied in Section 2 of Kiyotaki and Moore (1997). We maintain their assumptions about preferences, technologies and markets. The only difference is that we introduce a non-zero depreciation rate of capital.\footnote{Section 3 of Kiyotaki and Moore (1997) also introduces depreciation.} This modification guarantees the existence of steady states in environments with different borrowing constraints; it is not critical to the equilibrium dynamics in response to the shock per se.

We consider a discrete-time, infinite-horizon, economy with two goods: a durable asset (land) and a nondurable commodity (fruit). The depreciation rate of land is δ and the total supply of land is \tilde{K}. The fruit cannot be stored. There is a continuum of infinitely lived agents. Some are farmers and some are gatherers.

Farmers. There is a measure one of infinitely lived, risk neutral farmers. The expected utility of a farmer at date t is

$$E_t \left(\sum_{s=0}^{+\infty} \beta^s x_{t+s} \right),$$

where x_{t+s} is her consumption of fruits at date $t + s$, and $\beta \in (0, 1)$ is the farmer’s discount rate. Each farmer takes one period to produce fruits from the land she holds, with the following constant returns to scale production function:

$$y_{t+1} = F(k_t) = (a + c) k_t,$$

where k_t is the farmer’s holding of land at the end of period t, ak_t is the portion of the output that is tradable, while the rest, ck_t, is non-tradable and can only be consumed by the farmer. Similar to Assumption 2 in Kiyotaki and Moore (1997), we assume c is large enough so that, in equilibrium, farmers will not want to consume more than the non-tradable portion of the fruits and invest all their funds in land. Finally, we use K_t to denote the aggregate land holding of farmers.

Gatherers. There is a measure one\footnote{In Kiyotaki and Moore (1997), there is a measure m of gatherer. For simplicity, we consider the case that $m = 1$.} of infinitely lived, risk neutral gatherers. The expected utility of a gather at date t is

$$E_t \left(\sum_{s=0}^{+\infty} \left(\beta' \right)^s x'_{t+s} \right),$$

where x'_{t+s} is his consumption of fruits at date $t + s$ and $\beta' \in (0, 1)$ is gatherers’ discount rate. We assume $\beta' > \beta$ so that in equilibrium farmers always borrow up to the maximum and do not want to postpone production, because they are relatively impatient.

Each gatherer has an identical production function that exhibits decreasing returns to
scale: an input of k'_t land at date t yields y'_{t+1} tradable fruits at date $t + 1$, according to

$$y'_{t+1} = G \left(k'_t \right),$$

where $G' > 0$, $G'' < 0$ and $G'(0) > aR > G' \left(\bar{K} \right)$. The last two inequalities are included to ensure that both farmers and gatherers are producing in the neighborhood of a steady-state equilibrium. Finally, we use $K'_t = \bar{K} - K_t$ to denote the aggregate land holding of gatherers.

Markets. At each date t, there is a competitive spot market in which land is exchanged for fruits at price q_t. The only other market is a one-period credit market in which one unit of fruit at date t can be exchanged for a claim to R_t units of fruit at date $t+1$. In equilibrium, as farmers are more impatient, they borrow from gatherers up to their borrowing constraints, and the rate of interest is always determined by gatherers’ time preferences: $R_t = \frac{1}{\beta} = R$.

Each farmer and each gatherer’s flow-of-funds constraint in each period t can then be summarized as

$$q_t \left(k_t - (1 - \delta) k_{t-1} \right) + Rb_{t-1} + x_t - ck_{t-1} = ak_{t-1} + b_t,$$

$$q_t \left(k'_t - (1 - \delta) k'_{t-1} \right) + Rb'_t - 1 + x'_t = G \left(k'_{t-1} \right) + b'_t,$$

where b_t and b'_t are the amount of loan borrowed by the farmer and the gatherer at period t.

Equilibrium concept. Same as Kiyotaki and Moore (1997), we consider perfect-foresight equilibria in which, without unanticipated shocks, the expectations of future variables get realized. We then consider the equilibrium effect of a shock to farmers’ net worth in the steady state (characterized later) and its transmission. As in Kiyotaki and Moore (1997), this shock is driven by an unexpected temporary aggregate shock to farmers’ productivity.

Capital prices and user costs. As each gatherer is not credit constrained, his demand for land is determined so the present value of the marginal product of land is equal to the opportunity cost, or user cost, of holding land, $u_t = q_t - (1 - \delta) q_{t+1} / R$:

$$\frac{1}{R} G' \left(k'_t \right) = \frac{1}{R} G' \left(K'_t \right) = u_t,$$

where the symmetric concave production function guarantees that each gatherer holds the same amount of land. Ruling out exploding bubbles in the land price as in Kiyotaki and Moore (1997), one can then express the land price as the present value of user costs,

$$q_t = \sum_{s=0}^{+\infty} \left(\frac{1 - \delta}{R} \right)^s u \left(K_{t+s} \right) = u \left(K_t \right) + \frac{(1 - \delta)}{R} q_{t+1}, \tag{A3}$$

where $u \left(K_t \right) \triangleq \frac{1}{R} G' \left(\bar{K} - K_t \right) = u_t$ expresses the user cost in each period as an increasing function of farmers’ aggregate land holding. The user cost is increasing in the farmers’ land holding because, if farmers hold more land, gatherers hold less land and their marginal

44Fruits are the numeraire throughout.
productivity of the land is higher. From the perspective of farmers, the above expression can be viewed as the capital supply curve they face. An increase in q_t or a decrease in q_{t+1} will increase the user cost of land, and increase the amount of land gatherers “supply” to farmers. Log-linearizing around the steady-state, we can express the above supply curve as

$$\hat{q}_t = \frac{1}{\eta} \frac{1 - \delta}{R} \hat{K}_t + \frac{1 - \delta}{\eta} - 1 \left(\frac{1 - \delta}{R} \right)^2 \hat{q}_{t+1} = \frac{1}{\eta} \frac{1 - \delta}{R} - 1 \sum_{s=0}^{\infty} \left(\frac{1 - \delta}{R} \right)^{-s} \hat{K}_{t+s}, \quad (A4)$$

where, for any variable X, \hat{X} denotes the log-deviation from the steady and η denotes the elasticity of the residual supply of land to farmers, with respect to the user cost at the steady state.

E.2 Collateral-Based Constraints

In this part, we follow Kiyotaki and Moore (1997) and study the equilibrium impact of an aggregate shock to farmers’ net worth under collateral-based constraints.

Collateral-based constraints. Similar to Kiyotaki and Moore (1997), in period t, if the farmer has land k_t then she can borrow b_t in total, as long as the repayment does not exceed the market value of land (net of depreciation) at $t+1$:

$$Rb_t \leq q_{t+1} (1 - \delta) k_t. \quad (A5)$$

Their micro-foundation for such constraints is as follows. In Kiyotaki and Moore (1997), farmers’ technology is idiosyncratic and they can always withdraw labor. As a result, fruits produced by farmers are not contractible. Creditors protect themselves by collateralizing the farmers’ land. The liquidation value of land is then the market value of land (net of depreciation) in the next period, which gives rise to the borrowing constraint in (A5).

Farmers’ behavior. As discussed above, farmers borrow up to the maximum amount as they are impatient. They also prefer to invest in land, consuming no more than their current output of non-tradable fruits.\(^\text{45}\) This means for each farmer, $x_t = ck_{t-1}$, $b_t = q_{t+1}k_t (1 - \delta) / R$ and

$$k_t = \frac{1}{q_t - \frac{1 - \delta}{R} q_{t+1}} [(a + q_t (1 - \delta)) k_{t-1} - Rb_{t-1}],$$

where $n_t = (a + q_t (1 - \delta)) k_{t-1} - Rb_{t-1}$ is the farmer’s net worth (defined as the maximum amount of funds available that can be used to acquire new assets and projects) at the beginning of date t, and $q_t - \frac{1 - \delta}{R} q_{t+1} = u_t$ is the amount of down payment required to purchase a unit of land. In the case of collateral-based constraints, it coincides with the user cost of land at t.

Since the optimal k_t and b_t are linear in k_{t-1} and b_{t-1}, we can aggregate across farmers to find the equations of the dynamics of aggregate land demand and borrowing of farmers.

\(^\text{45}\)This is because of a high enough c (non-tradable fruits), which guarantees the value of investing in land is high enough. Around the steady state, it suffices that $c < \frac{1 - \beta}{\beta} a$, which is not restrictive when β is close to 1.
\(K_t \) and \(B_t \):

\[
K_t = \frac{1}{q_t - \frac{1 - \delta}{R} q_{t+1}} [(a + q_t (1 - \delta)) K_{t-1} - R B_{t-1}], \quad (A6)
\]

\[
B_t = \frac{1 - \delta}{R} q_{t+1} K_t, \quad (A7)
\]

Steady state. Based on conditions (A3), (A6) and (A7), one can characterize the unique steady state, where

\[
\left(1 - \frac{1}{R} (1 - \delta)\right) q^* = a^* = a,
\]

\[
\frac{1}{R} G' \left[(\bar{K} - K^*)\right] = u^*,
\]

\[
\frac{B^*}{K^*} = \frac{(1 - \delta) a}{R \left(1 - \frac{1}{R} (1 - \delta)\right)}.
\]

Shock and transmission. As in Kiyotaki and Moore (1997), we consider the equilibrium response to an unexpected aggregate shock to farmers’ net worth at \(t = 0 \). Specifically, suppose at date \(-1\) the economy is in the steady state: \(K_{-1} = K^* \) and \(B_{-1} = B^* \). There is an unexpected and temporary shock to all farmers’ productivity at period 0, which increases the fruits they harvest to \(1 + \Delta \) times the expected level, at the start of date 0.\(^46\) Such a shock will then increase farmers’ net worth by \(\Delta a K^* \). The production technologies then return to the pre-shock level thereafter. (For exposition, we use a positive shock \(\Delta > 0 \). The analysis of a negative shock \(\Delta < 0 \) is identical under log-linearization.)

Using conditions (A6) and (A7), one can then characterize farmers’ land demand curve at \(t = 0 \) and \(t \geq 1 \). For period \(t = 0 \), farmers’ land demand curves without and with log-linearization are:\(^47\)

\[
u(K_0) K_0 = \left(q_0 - \frac{1 - \delta}{R} q_1\right) K_0 = (a + \Delta a + (q_0 - q^*) (1 - \delta)) K^*, \quad (A8)
\]

\[
\left(1 + \frac{1}{\eta}\right) \hat{K}_0 = \frac{1}{1 - \frac{1}{R} (1 - \delta)} \hat{q}_0 - \frac{1}{1 - \frac{1}{R} (1 - \delta)} \hat{q}_1 + \hat{K}_0 = \Delta + \frac{1 - \delta}{1 - \frac{1}{R} (1 - \delta)} \hat{q}_0, \quad (A9)
\]

An increase of land price \(q_0 \) increases farmers’ net worth, \((a + \Delta a + (q_0 - q^*) (1 - \delta)) K^* \), and thus increases their land demand, for a given down payment per unit of capital (in this case the same as the user cost \(u(K_0) = q_0 - \frac{1 - \delta}{R} q_1 \)).

Moreover, the net worth increases more than proportionately with \(q_0 \) because of the

\(^46\)Following Kiyotaki and Moore (1997), we take \(\Delta \) to be small, so we can log-linearize around the steady state and find closed-form expressions for the new equilibrium path.

\(^47\)In condition (A9), \(\frac{1 - \delta}{1 - \frac{1}{R} (1 - \delta)} = \frac{a K^*}{\alpha K^*} \) is the ratio between farmers’ land holding collateral value and their net worth in the steady state.
leverage effect of outstanding debt. Even though the down payment also increases with q_0, this is largely dampened as the down payment decreases with next period land price q_1. As a result, the total impact of land prices on farmers’ land demand is highly positive (when $R \approx 1$ and $\delta \approx 0$, the coefficient on \hat{q}_0 in condition (A9) could be very large).

For period $t \geq 1$, farmers’ land demand curves without and with log-linearization are

$$u(K_t)K_t = \left(q_t - \frac{1-\delta}{R} \hat{q}_{t+1}\right)K_t = aK_{t-1}, \quad (A10)$$

$$\left(1 + \frac{1}{\eta}\right) \hat{K}_t = \frac{1}{1 - \frac{1}{R} (1 - \delta)} \hat{q}_t - \frac{1}{1 - \frac{1}{R} (1 - \delta)} \hat{q}_{t+1} + \hat{K}_t = \hat{K}_{t-1}. \quad (A11)$$

An increase in farmers’ land holding in period $t-1$ increases their net worth in period $t-1$, aK_{t-1}, and in turn translates to an increase in farmers’ land holding in period t.\footnote{However, farmers’ period t net worth, aK_{t-1}, no longer depends on land price in t. This is because, for all $t \geq 1$, an increase in period t land price will be anticipated in period $t-1$, and allow farmers to borrow more. As a result, land price’s impact on farmers’ period t net worth is offset by the increase in debt payment in period t.}

Through the forward looking land pricing equation in condition (A3), the persistent increase in farmers’ land holding then increases land price in period 0, far more than what is driven by the increase in user cost in that particular period. The increase in land price then further increases farmers’ net worth and capital demand in period 0 through condition (A9), which in turn increases farmers’ net worth and land holding in all periods and further pushes up the land price. This asset price feedback loop is the core of the financial acceleration mechanism in Kiyotaki and Moore (1997).

From conditions (A4), (A9), and (A11), we can solve the the full equilibrium dynamics with collateral-based constraints:

$$\hat{K}_t = \left(1 + \frac{1}{\eta}\right)^{-t-1} \eta \frac{\delta}{1 + \frac{R}{1-\delta} - 1} \left(1 + \frac{R}{1-\delta} - 1\right) \Delta, \quad (A12)$$

$$\hat{q}_t = \left(1 + \frac{1}{\eta}\right)^{-t} \eta \frac{1}{1 + \frac{R}{1-\delta} \Delta} \Delta.$$

When $R \approx 1$ and $\delta \approx 0$, the multiplier $1 + \frac{R}{1-\delta} - 1\eta$ in farmers’ land holding could be very large, summarizing financial acceleration driven by asset price feedback in Kiyotaki and Moore (1997).

E.3 Earnings-Based Constraints

In this part, we then consider the case of earnings-based constraints studied in this paper.

Earnings-based constraints. The constraint is specified as follows. If at period t, a farmer has land k_t, then she can borrow b_t in total, as long as the repayment does not exceed...
a multiple of her (tradable) earnings at \(t + 1 \):\(^{49}\)

\[
Rb_t \leq \theta a k_t.
\]

(A13)

Such a constraint could arise if the bankruptcy court is able to and prefers to enforce the continuation of operation when the farmer fails to pay her debt.\(^{50}\)

Farmers’ behavior. Similar to the analysis in the previous subsection following Kiyotaki and Moore (1997), farmers prefer to borrow up to the maximum as they are impatient; they also prefer to invest in land, consuming no more than their current output of non-tradable fruits.\(^{51}\) This means for each farmer, \(x_t = c k_{t-1}, b_t = \theta a k_t/R \) and

\[
k_t = \frac{1}{q_t - \frac{\theta a}{R}} \left[(a + q_t (1 - \delta)) k_{t-1} - Rb_{t-1} \right],
\]

where \(q_t - \frac{\theta a}{R} \) is how much down payment is required to purchase a unit of land. In the case of earnings-based constraints, it does not depend on the land price in the next period \(q_{t+1} \) and does not coincide with the user cost \(u_t \). This is because \(q_{t+1} \) does not directly enter the farmer’s borrowing constraint (A13) in the case of EBCs. As we elaborate later, this missing link from asset prices to farmers’ borrowing capacity is key to dampening asset price feedback under EBCs.

Since the optimal \(k_t \) and \(b_t \) are linear in \(k_{t-1} \) and \(b_{t-1} \), we can aggregate across farmers to characterize the dynamics of aggregate land demand and borrowing of farmers, \(K_t \) and \(B_t \):

\[
K_t = \frac{1}{q_t - \frac{\theta a}{R}} \left[(a + q_t (1 - \delta)) K_{t-1} - RB_{t-1} \right],
\]

(A14)

\[
B_t = \frac{1}{R} \theta a K_t.
\]

(A15)

Steady state. We set \(\theta = \frac{\delta}{1 - \frac{\delta}{1 - \delta}} \). This guarantees that the economy under earnings-based constraints shares the same steady states as the economy under collateral-based constraints. This ensures that the difference in the two economies’ responses to the shock we

\[^{49}\text{Here we tie the farmer’s borrowing capacity to her earnings at } t + 1, \text{ generated by current period land holding } k_t. \text{ One could also tie the farmer’s borrowing capacity to her earnings at } t, \text{ generated by the past period land holding } k_{t-1}. \text{ Such backward borrowing capacity will not change the key lesson about the attenuation of asset price feedback in this section. However, it would open the door for more deviations from the KM benchmark, such as path-dependence of firms’ outcomes beyond their dependence on current net worth level.}\]

\[^{50}\text{It must be that } \theta \leq \frac{1}{1 - \frac{\delta}{1 - \delta}} = 1 + \frac{\delta}{R} + \left(\frac{1 - \delta}{R} \right)^2 + \cdots, \text{ which is the present value of tradable fruits generated by one unit of land held by the farmer. The ratio } \frac{\delta}{R} \text{ could be thought of as the proportion of tradable fruits that can be produced with court involvement and continuing operations.}\]

\[^{51}\text{This could be guaranteed with a high enough } c \text{ (non-tradable fruits). Note that the farmer’s utility from investing a dollar in land today is at least } \beta \frac{(a + c + (1 - \delta)q_{t+1})}{q_t - \frac{\theta a}{R}}, \text{ the utility of investing in land in this period and consuming fully in the next period. It is always bigger than one with a large } c, \text{ as } q_t \text{ is bounded above (gatherers’ marginal product is bounded above).}\]
consider is driven by the form of borrowing constraints, instead of the steady state leverage ratio.

Shock and transmission. Similar to Kiyotaki and Moore (1997) and the analysis in the previous part, we consider the equilibrium response to an unexpected aggregate shock to farmers’ net worth at $t = 0$. Specifically, suppose at date $t = -1$ the economy is in the steady state: $K_{-1} = K^*$ and $B_{-1} = B^*$. There is an unexpected and temporary shock to all farmers’ productivity at period $t = 0$, which increases the fruits they harvest to $1 + \Delta$ times the expected level, at the start of date $t = 0$.\(^{52}\) Such a shock increases farmers’ net worth by ΔaK^*. The production technologies between 0 and 1 (and thereafter) then return to the pre-shock level.

Using conditions (A14) and (A15), one can then characterize farmers’ land demand curve at period $t = 0$ and $t \geq 1$. For period 0, farmers’ land demand curves without and with log linearization are:\(^{53}\)

\[
\left(q_0 - \frac{\theta a}{R}\right) K_0 = \left((1 - \theta) a + \Delta a + q_0 (1 - \delta)\right) K^*, \tag{A16}
\]

\[
\hat{q}_0 \left(\frac{1}{1 - \frac{1}{R} (1 - \delta)}\right) + \hat{K}_0 = \Delta + \frac{1 - \delta}{1 - \frac{1}{R} (1 - \delta)} \hat{q}_0, \tag{A17}
\]

\[\iff \hat{K}_0 = \Delta - \frac{\delta}{1 - \frac{1}{R} (1 - \delta)} \hat{q}_0.\]

For a given down payment per unit of capital $(q_0 - \frac{\theta a}{R})$, an increase of land price q_0 still increases farmers’ net worth, $(1 - \theta) a + \Delta a + q_0 (1 - \delta)$. However, the down payment per unit of capital also increases with land price q_0. Different from the case under collateral-based constraints, as farmers’ borrowing capacity under EBCs do not depend on the land price in the next period q_1, an increase of q_1 will not relax their borrowing constraints and decrease the down payment per unit of capital. As a result, the total impact of land prices on farmers’ land demand is negative, as shown by the last expression above. This is in stark contrast with the case under collateral-based constraints. The asset price movement now dampens the financial shock’s impact on farmers’ land holding, instead of generating financial amplification.

For period $t \geq 1$, farmers’ land demand curve is:

\(^{52}\)Following Kiyotaki and Moore (1997), we take Δ to be small, so we can log-linearize around the steady state and find closed-form expressions for the new equilibrium path.

\(^{53}\)In condition (A9), $\frac{1}{1 - \frac{1}{R} (1 - \delta)} = \frac{q^*}{q - \frac{\theta a}{R}}$ is the ratio between land price and down payment in the steady state and $\frac{1 - \delta}{1 - \frac{1}{R} (1 - \delta)} = \frac{(1 - \theta) a + (1 - \delta) q^* K^*}{(1 - \theta) a + (1 - \delta) q^* K^*}$ is the ratio between collateral value of farmers’ land holding and net worth in the steady state.
\[
(q_t - \frac{\theta a}{R}) K_t = [(1 - \theta) a + (1 - \delta) q_t] K_{t-1}, \quad (A18)
\]
\[
\hat{q}_t \left(\frac{1}{1 - \frac{1}{R} (1 - \delta)} \right) + \hat{K}_t = \frac{1 - \delta}{1 - \frac{1}{R} (1 - \delta)} \hat{q}_t + \hat{K}_{t-1}, \quad (A19)
\]
\[
\iff \hat{K}_t = -\frac{\delta}{1 - \frac{1}{R} (1 - \delta)} \hat{q}_t + \hat{K}_{t-1}.
\]

Compared to the case under collateral-based constraints, condition (A19), there are two differences. First, as discussed above, the down payment under EBCs does not depend on next period land price, \(q_{t+1}\), as \(q_{t+1}\) does not relax farmers’ borrowing constraints. Second, current period net worth, \((1 - \theta) a + (1 - \delta) q_t\), now increases with land prices in period \(t\). Specifically, in the case with EBCs, as an increase of land prices in period \(t\) does not allow farmers to borrow more in \(t-1\), \(q_t\)’s impact on farmers’ period \(t\) net worth will not be offset by the increase in debt payment in period \(t\). As we discuss more below, this may lead to a more persistent impact of the shock’s impact on farmers’ net worth, even though the initial impact is much more muted with EBCs.

54 As shown above, in farmers’ land demand condition (A19), the appearance of the term \(\frac{1 - \delta}{1 - \frac{1}{R} (1 - \delta)} \hat{q}_t\) increases the persistence of the shock. The disappearance of term \(-\frac{\delta}{1 - \frac{1}{R} (1 - \delta)} \hat{q}_{t+1}\) on the left hand side, meanwhile, decreases the persistence of the shock. However, as \(\hat{q}_t = \frac{1}{R} \hat{q}_{t+1} > 0\) in the equilibrium (from condition (A21)), the first effect nominates.

From conditions (A4) and (A19), we can then characterize the equilibrium dynamics under earning-based constraints:

\[
\begin{pmatrix}
\hat{q}_t \\
\hat{K}_t
\end{pmatrix} =
\begin{pmatrix}
\frac{R}{1 - \delta} & -\frac{1}{\eta} \left(\frac{R}{1 - \delta} - 1 \right) \\
-\delta & 1 + \frac{\delta}{\eta} \frac{R}{1 - \delta}
\end{pmatrix}
\begin{pmatrix}
\hat{q}_{t-1} \\
\hat{K}_{t-1}
\end{pmatrix}
\quad \forall t \geq 1. \quad (A20)
\]

The matrix \(\begin{pmatrix}
\frac{R}{1 - \delta} & -\frac{1}{\eta} \left(\frac{R}{1 - \delta} - 1 \right) \\
-\delta & 1 + \frac{\delta}{\eta} \frac{R}{1 - \delta}
\end{pmatrix}\) has only one eigenvalue \(\lambda \in (0, 1)\) within the unique circle.
55 Note that the land price is bounded as the gatherer’s marginal product is bounded. As a result, explosive equilibrium can be ruled out. One can also prove the equilibrium uniqueness without the help of log-linearization.

E.4 Financial Acceleration: A Comparison

Now we can compare the equilibrium impact of the aggregate shock to farmers’ net worth under these two forms of borrowing constraints. As mentioned above, since land price increases have a negative impact on farmers’ land demand in the case of EBCs, financial
acceleration due to asset price feedback is dampened. Indeed, one can prove analytically that the shock’s initial impact on farmers’ capital holding and aggregate output is stronger with collateral-based constraints.

Lemma 1. When the shock to farmers’ net worth hits, the impact on farmers’ land holding and aggregate output is stronger with collateral-based constraints.

To numerically illustrate the difference, we consider a standard parametrization. Specifically, we let \(R = 1.01, \delta = 0.025 \) and \(\eta = 1 \). Figure A2 shows the impulse response of farmers’ land holding to the shock \(\Delta \). We find that the initial impact on farmers’ land holding under collateral-based constraints is ten times as large as the one under earnings-based constraints. With EBCs, the dampening of financial acceleration driven by asset price feedback is quantitatively very important. As aggregate output \(\hat{Y} \) is just a multiple of \(\hat{K} \) (proved below), the initial impact on aggregate output under collateral-based constraints is also ten times as large as the one under earnings-based constraints. Nonetheless, the impact of the shock in the economy with EBCs can be more persistent. This is because, with EBCs, for each period \(t \geq 1 \), as borrowing in the previous period does not depend on current period asset prices, higher land value increases farmers’ net worth and is not offset by higher debt payment.

Figure A2: Impulse Response of Farmers’ Land Holdings
This plot shows farmers’ land holdings (log deviations from steady state) after a small positive unexpected shock to their net worth (one log point).

Section 3 of Kiyotaki and Moore (1997) also considers a case in which the elasticity of land supply is low, \(\eta = 0.1 \) (shown in Figure A3). Based on this parameter value, it is still the case that the initial impact on farmers’ land holding and aggregate output under collateral-
based constraints is way larger than that under earnings-based constraints, corroborating the robustness of the above finding.

Figure A3: Impulse Response of Farmers’ Land Holdings, \(\eta = 0.1 \)

This plot sets \(\eta = 0.1 \), rather than \(\eta = 1 \) in Figure A2.

\[F^\prime (w + b^*) = C_b (b^*, \pi). \]
\[(A22) \]

F Proofs

Proof of Proposition 1. In an internal solution, the optimal external borrowing must satisfy the following first order condition with respect to \(b^* \):

\[F^\prime (w + b^*) = C_b (b^*, \pi). \]
\[(A22) \]

(i) We can then use the inverse function theorem to derive how optimal external borrowing \(b^* \) responds to \(\pi \), for a given \(w \): \(\frac{\partial b^*}{\partial \pi} \bigg|_w = \frac{C_{bb}(b^*, \pi)}{C_{bb}(b^*, \pi) + F''(w + b^*)}. \) As \(C_{bb} \leq 0, C_{bb} > 0 \) and \(F''(x) \leq 0 \), for a given amount of internal funds \(w \), optimal borrowing is weakly increasing in EBITDA \(\frac{\partial b^*}{\partial \pi} \bigg|_w \geq 0 \). For optimal investment, using \(I^* = b^* + w \) we have \(\frac{\partial I^*}{\partial \pi} \bigg|_w = \frac{\partial b^*}{\partial \pi} \bigg|_w \), and optimal investment is weakly increasing in EBITDA \(\frac{\partial I^*}{\partial \pi} \bigg|_w \geq 0 \).

(ii) Similarly, we can also use the inverse function theorem to derive how optimal borrowing \(b^* \) responds to \(w \), for a given \(\pi \): \(\frac{\partial b^*}{\partial w} \bigg|_\pi = \frac{-F''(w + b^*)}{-C_{bb}(b^*, \pi) + F''(w + b^*)}. \) As \(C_{bb} > 0 \) and \(F''(x) \leq 0 \), for a given amount of EBITDA \(\pi \), borrowing is weakly decreasing in internal funds \(\frac{\partial b^*}{\partial w} \bigg|_\pi \leq 0 \). Moreover, when \(F \) is strictly concave, \(\frac{\partial b^*}{\partial w} \bigg|_\pi < 0 \). For optimal investment, using \(I^* = b^* + w \), we have \(\frac{\partial I^*}{\partial w} \bigg|_\pi = 1 + \frac{\partial b^*}{\partial w} \bigg|_\pi = 1 + \frac{-F''(w + b^*)}{-C_{bb}(b^*, \pi) + F''(w + b^*)} = \frac{-C_{bb}(b^*, \pi)}{-C_{bb}(b^*, \pi) + F''(w + b^*)} > 0 \), and optimal investment is strictly increasing in internal funds.

Proofs for Appendix E
Characterization of the equilibrium dynamics under collateral-based constraints.

From conditions (A4) and (A11), we have, for all t,

$$
\hat{q}_t = \frac{1}{\eta} \left(\frac{R}{1-\delta} \right) - 1 \left(1 + \frac{1}{\eta} \right)^{-1} \hat{K}_t = \frac{1 + \frac{1}{\eta}}{\eta} \left[\frac{R}{1-\delta} - 1 \right] \hat{K}_t,
$$

Substitute in period 0 farmers’ land demand curve (condition (A9)), we have

$$
\hat{K}_0 = \Delta + \frac{1 - \delta}{1 - \frac{1}{\eta}} \left[\frac{R}{1-\delta} - 1 \right] \hat{K}_0,
$$

$$
\hat{q}_0 = \frac{1}{\eta} \left(1 + \frac{1}{\eta} \right) \Delta.
$$

Using conditions (A11), we then have

$$
\hat{K}_t = \left(1 + \frac{1}{\eta} \right)^{-t} \hat{K}_0 \quad \text{and} \quad \hat{q}_t = \left(1 + \frac{1}{\eta} \right)^{-t} \hat{q}_0.
$$

Characterization of the steady state under earnings-based constraints. From conditions (A14) and (A15), the steady state can be characterized by

$$
q^* \delta K^* + RB^* = aK^* + B^*,
$$

$$
RB^* = \theta aK^*,
$$

$$
q^* = u(K^*)
$$

As a result,

$$
q^* = a \left(1 + \frac{\theta}{R} - \theta \right) \frac{1}{\delta}, \quad B^* = \frac{\theta a}{R} \quad \text{and} \quad K^* = u^{-1} \left(a \left(1 + \frac{\theta}{R} - \theta \right) \right).
$$

When $\theta = \frac{1 - \delta}{1 - \frac{1}{\eta} \delta}$, the steady state will then be the same as the one under collateral-based constraints.

Characterization of the equilibrium under earnings-based constraints. $\lambda = \frac{R}{1-\delta} \left(1 + \frac{\theta}{\delta} \right) + 1 - \sqrt{\frac{R}{2} \left(1 + \frac{\theta}{\delta} \right) + 1 - \frac{R}{\delta}} \in (0, 1)$ is the only eigenvalue of

$$
\begin{pmatrix}
\frac{R}{1-\delta} & -\frac{1}{\eta} & (\frac{R}{1-\delta} - 1) \\
-\delta & 1 + \frac{\delta R}{\eta - \delta} & 1 + \delta \frac{R}{\eta - \delta}
\end{pmatrix}
$$

that is within the unit circle. Together with the fact that \hat{q}_t is bounded, we have $\hat{q}_0 = \alpha \hat{K}_0$, $\hat{q}_t = \lambda^t \hat{q}_0$ and $\hat{K}_t = \lambda^t \hat{K}_0$, where $\alpha = \frac{q_0}{K_0} = \frac{1}{\eta} \frac{R}{1-\delta} - 1 > 0$ and q_0, K_0 is the eigenvector corresponding to λ. Using the farmers’ capital holding at 0 in condition (A17), we arrive at
Proof of Lemma 1. From conditions (A12) and (A21), for the part of the Lemma about farmers’ land holding \(\frac{\partial K_0}{\partial \Delta K} > \frac{\partial K_0}{\partial \Delta EBC} \), we only need to prove that

\[
\frac{1}{1 + \frac{1}{\eta}} \left(1 + \frac{R}{1-\delta} \right) \frac{\eta}{1 - \frac{\delta}{1-\eta}} > \frac{1}{1 + \frac{\delta}{\eta}}. \tag{A23}
\]

Let us first prove that

\[
\frac{1}{1 + \frac{1}{\eta}} \left(1 + \frac{R}{1-\delta} \right) \frac{\eta}{1 - \frac{\delta}{1-\eta}} > 1 + \frac{\delta}{\eta}. \tag{A24}
\]

This is equivalent to proving that

\[
\frac{\frac{R}{1-\delta} - 1 + \frac{\delta}{\eta}}{\frac{R}{1-\delta} - 1 + \frac{1}{\eta}} = \left(1 + \frac{\frac{R}{1-\delta} - 1 + \frac{\delta}{\eta}}{\frac{R}{1-\delta} - 1 + \frac{1}{\eta}} \right) \frac{\eta}{1 - \frac{\delta}{1-\eta}} > 1 + \frac{1}{\eta},
\]

which is true as \(\frac{R}{1-\delta} > 1 \) and \(\delta < 1 \).

We then prove that

\[
1 + \frac{\delta}{1 - \frac{1}{\eta}(1-\delta)\alpha} < \frac{1}{1 + \frac{\delta}{\eta}}. \tag{A25}
\]

Note that from the formula of \(\lambda \) above, we have

\[
\lambda = \frac{\left(\frac{R}{1-\delta} \left(1 + \frac{\delta}{\eta} \right) + 1 \right) - \sqrt{\left(\frac{R}{1-\delta} \left(1 + \frac{\delta}{\eta} \right) + 1 \right)^2 - 4 \frac{R}{1-\delta}}}{2 \frac{R}{1-\delta}}
\]

\[
= \frac{\frac{R}{1-\delta} \left(1 + \frac{\delta}{\eta} \right) + 1 + \sqrt{\left(\frac{R}{1-\delta} \left(1 + \frac{\delta}{\eta} \right) + 1 \right)^2 - 4 \frac{R}{1-\delta}}} {\frac{R}{1-\delta} \left(1 + \frac{\delta}{\eta} \right) + 1}
\]

\[
\alpha = \frac{\frac{1}{\eta} \left(\frac{R}{1-\delta} - 1 \right)}{\frac{R}{1-\delta} - \frac{\frac{R}{1-\delta} \left(1 + \frac{\delta}{\eta} \right) + 1} \left(\frac{R}{1-\delta} \right)^2 \left(1 + \frac{\delta}{\eta} \right)^2 (1 + \frac{\delta}{\eta})^2 + 1}
\]

We then have

\[
\frac{1}{1 + \frac{\delta}{1 - \frac{1}{\eta}(1-\delta)\alpha}} < \frac{1}{1 + \frac{\delta}{1 - \frac{1}{\eta}(1-\delta)\alpha}} \frac{\frac{1}{\eta} \left(\frac{R}{1-\delta} - 1 \right)}{\left(\frac{R}{1-\delta} \right)^2 \left(1 + \frac{\delta}{\eta} \right)^2 (1 + \frac{\delta}{\eta})^2 + 1} = \frac{1}{1 + \frac{\delta}{\eta}} < \frac{1}{1 + \frac{\delta}{\eta}}.
\]

Together, we prove condition (A23). Finally, note that the aggregate output from period \(t \) land holding (which gets produced in period \(t + 1 \)) is

\[
\hat{Y}_t = \frac{a + c - Ra (a + c) K^*}{a + c} K_t.
\]
where \(\frac{a+c-Ra}{a+c} \) reflects the difference between the farmers’ productivity (equal to \(a+c \)) and the gatherers’ productivity (equal to \(Ra \) in the steady state) and the ratio \(\frac{(a+c)K^*}{Y^*} \) is the share of farmers’ output. In other words, \(\hat{Y}_t \) is just a multiple \(\hat{K}_t \). The above result about \(\frac{dK_0}{d\Delta} \) then also applies to \(\frac{dY_0}{d\Delta} \).