Whatever It Takes?
The Impact of Conditional Policy Promises

Valentin Haddad, Alan Moreira, and Tyler Muir*

October 28, 2022

Abstract

The announcement of an economic rescue tool often comes with the perception of more intense intervention if conditions worsen. We propose and implement a method to identify perceived conditional policy across states and quantify their impact using data from options markets. When the Federal Reserve introduced corporate bond purchases during the COVID-19 crisis, markets expected five times more price support in crash scenarios relative to the median case. This “policy put” to significantly expand the size of the intervention in bad states explains half of the market response to the announcement. Furthermore, we document that the behavior of the price and tail risk of corporate bonds remains substantially distorted even after purchases have ceased. We confirm the pervasive influence of conditional policy across many policy announcements: U.S. quantitative easing, Bank of Japan asset purchases, bank equity injections in 2008, and FOMC releases.

*Haddad: UCLA & NBER, valentin.haddad@anderson.ucla.edu; Moreira: University of Rochester & NBER, alan.moreira@simon.rochester.edu; Muir: UCLA & NBER, tyler.muir@anderson.ucla.edu. We thank seminar participants at UCLA, LBS, USC, MIT, Stockholm, the Federal Reserve Board, UT Dallas, Temple, and various conferences for comments.
Suppose we are in an economic crisis and the central bank announces asset purchases of $100 billion to support financial markets and the economy. After the announcement, asset prices strongly increase. A large response relative to the amount announced makes it tempting to conclude that asset purchases are a very effective policy tool. But an alternative view is that the market infers that policymakers might do “whatever it takes” in that they will purchase much more than initially announced if economic conditions worsen. Under this view, the strong asset price response is not only driven by the announced quantity, but also by the value of the additional purchases if the situation gets worse. Distinguishing these views is important. Under the whatever-it-takes view, the potential expansion of the central banks’ balance sheet is much larger, the price impact per dollar of purchases much smaller, the price response to future announced purchases much weaker, and the scope for moral hazard concerns much larger, compared to the view of a one-time $100 billion asset purchase. While asset purchases are an increasingly important tool for central banks globally, these same issues arise in many other policy announcements including bank bailouts, fiscal policy, or forward guidance: when a policy is announced, markets do not only learn a single headline number, but form a view of policy actions in many different states of the world.

In this paper, we propose and implement a method to measure the state contingent impact of policy actions. Our method uses changes in the distribution implied by option prices before and after policy announcements to characterize the impact of policy across many possible states. We find pervasive evidence of larger policy impact (e.g., larger policy interventions) in bad states of the world across many financial stabilization policies including corporate bond purchases during the COVID-19 crisis, U.S. quantitative easing, asset purchases by both the Bank of Japan and European Central Bank, and bank capital injections during the 2008 crisis. These findings are consistent with the “whatever it takes” or “policy put” view that markets expected larger interventions if conditions worsened. Our results shed light on the effectiveness of these policies, the “weakening
announcement effect” that effectiveness appears much smaller for later announcements of the same policy tool, and debates about how such policies can potentially create moral hazard concerns.

Our primary empirical setting is the Fed’s announcement of corporate bond purchases in March of 2020, which dramatically boosted corporate bond prices despite a small amount of actual purchases. We find that the announcement increased corporate bond prices by 40% in states where they would have otherwise decreased 30% without intervention, and increased prices only 5% in states where they would have increased 10% in the counterfactual of no intervention – a striking asymmetric effect with a signature very similar to a put option. We quantify how much this state-contingent policy mattered for the overall announcement effect: at least 50% of the large price recovery from the announcement came from additional policy in the left tail. Our results explain why this particular announcement led to an immediate, dramatic increase in corporate bond prices of between $500 billion and $1 trillion, despite very small ultimate purchases of only about $15 billion: the market expected much more aggressive intervention if economic conditions had worsened instead of improved.¹

How do we infer the state-contingent policy impact? We need to assess how much the policy changes asset prices in each potential future state of the world. Option contracts provide a unique window into this state-contingent behavior. An out-of-the-money put, which only pays off in low price states, is entirely driven by expectations of policy in bad states. Conversely, an out-of-the-money call that pays off only when prices are high reveals policy when conditions improve. This simple idea already leads to evidence supportive of more intervention in the left tail. Using options on corporate bond ETFs, we see a stronger recovery in the price of contracts targeting bad states of the world at the end.

¹This accords with Jerome Powell’s statement to the U.S. House of Representatives on June 16th, 2020 that “markets are functioning pretty well, so our purchases will be at the bottom end of the range that we have written down.”
announcement – implied volatilities fall much more in the left tail than the right tail of bond prices. We show how to go further than this qualitative assessment and obtain the entire state-contingent policy.

We then estimate what we call a “price support function,” \( g(.) \), that answers: if the price moves to \( p \) absent intervention, the central bank will raise it by \( g(p) \). First, the price of options across different strikes reveals the market perception of the distribution of the future price, that is, the risk-neutral distribution (Breeden and Litzenberger (1978)). We estimate this distribution using options maturing three months from the policy announcement, roughly when the corporate bond purchases were implemented. Comparing before and after the announcement, we can see how the perceived purchases change the entire distribution of the price at that horizon. The second step is to find a price support function that ties these two distributions together. Which prices have been moved to which new levels to obtain the post-announcement distribution? This type of mathematical question is a transport problem, and we derive its solution. The price support function is unique as long as the policy is order-preserving: the Federal Reserve does not support prices so much in poor states of the world that they exceed prices in better states.

The price support function we recover in the data is strongly asymmetric and resembles a “policy put:” while price support is low and relatively flat in good states of the world, it increases to much larger values as one moves towards worse states.\(^2\) Quantitatively, we find that the market expected over five times more price support for adverse states in the corporate bond market compared to the current state, and significantly more still compared to good states. We decompose the recovery in overall prices at announcement between a base effect and conditional policy using these numbers. We find at least 50% of the initial response in corporate bond prices is due to the conditional behavior in

\(^2\)See Cieslak and Vissing-Jorgensen (2021) and also Drechsler et al. (2018) for a related discussion of monetary policy and stock returns and Hattori et al. (2016) on the response of quantitative easing on stock market tail risk.
the left tail. That is, if the price support were constant and equal to the price support in the median state, announcement returns would have been less than 50% as large.

Our results also suggest that state-contingent policy is an appealing explanation for the broader finding that announcements of asset purchase programs are associated with large movements in asset prices (Gagnon et al., 2018; Vissing-Jorgensen and Krishnamurthy, 2011; Haddad et al., 2021).\(^3\) Further, Hesse et al. (2018), Meaning and Zhu (2011), and Bernanke (2020) find a “weakening announcement effect:” initial stage announcements of asset purchases in the US and Europe have large effects on asset prices but later stage announcements have little to no effect. An interpretation consistent with our results is that early announcements convey state-contingent actions to do more if the situation worsens, but in later stages of asset purchase programs this has already been reflected in prices.\(^4\) Thus, even a large announcement later on can appear to have zero effect.

We can go from measuring contingent price support to measuring contingent policy actions by making additional assumptions on their relation. To illustrate this process, consider the simple view that the elasticity of bond prices to bond purchases is constant across states. In this case, the asymmetry that we document implies around 30 times larger purchases if the price had fallen by 30% compared to the realized state, and around five times larger purchases compared to the median state. This state-dependent quantity view is consistent with statements made by the Fed, and we argue it is more plausible than a view of a fixed small quantity but state-dependent elasticity – under that view the price impact per dollar of purchases would have to exceed $200 in some states.

We then bring evidence from additional assets to sharpen our inference. We explore in which states the Fed was likely to make purchases. Corporate bond prices can fall either because of rising risk-free rates, increases in credit risk or because of disruptions in corporate bond markets not due to fundamentals. We infer the distribution of a synthetic

\(^3\)See also D’Amico and King (2013), Hamilton and Wu (2012).

\(^4\)See also Grinblatt and Wan (2020), which discusses anticipated effects of announcements.
corporate bond index using options on Treasuries and options on the investment-grade CDX index. Using copula methods to model their joint distribution, we find that the distribution of synthetic bonds did not show as severe of a left tail initially. Moreover, this left tail did not shrink as substantially after the announcement. This suggests that the market expected large conditional purchases to happen in states where corporate bond markets were highly dislocated – states with an even larger CDS-bond basis than at the time of announcement.

An important issue is whether changes in the pricing of risk due to the policy can drive the announcement effects instead of our inferred price support. In our baseline calculation we do not make any assumptions about risk-pricing in general, but we do assume that risk-pricing does not change on announcement for payoffs at the horizon between the announcement of purchases and actual purchases. We allow for arbitrary unmeasured changes in risk-pricing for periods beyond when the purchases occur. Empirically, we see no response to the policy announcement in the closely related high-yield market, suggesting that the broad pricing of credit risk does not change on announcement. This cuts against the view of a broad change in the price of risk.

To further explore and clarify these issues we study a segmented markets model as in Vayanos and Vila (2021) with a specialized investor who only trades investment-grade corporate bonds. The investors’ pricing kernel is given by \( \text{risk of asset} \times \text{quantity held} \). With constant purchases, we show that the investors’ pricing kernel does not change on announcement for payoffs before purchases are made, but will after purchases are made as this is when risk is taken off the investors’ balance sheet. Prices rise at the announcement through lower risk premiums from the purchase date onward. Importantly, recovering an asymmetric price support function only happens when purchases are state dependent and asymmetric themselves. When purchases are state dependent, the risk of the asset itself can change and this can change the specialized investors pricing kernel between announcement and purchases. We show how to adjust our price support function
in this case and find that our main conclusions of strongly asymmetric price support still hold.

The price support function gives a sharp measurement of the short-term implications of state-contingent policy. But the announcement of purchases can also have long-term implications if the market believes that the Federal Reserve will now step into the corporate bond market whenever it gets distressed. We present three pieces of evidence suggesting long-term effects of the introduction of bond purchases. We focus on properties of tail risk specifically, similarly to our main approach. First, after the new policy, tail risk in corporate bond markets becomes far less sensitive to other measures of asset price tail risk, for example measured using equity index options. This result suggests that the “policy put” is still present, dampening downside risk in this market. Second, corporate bond returns also become far less sensitive to changes in the VIX, which shows the downside dampening is relevant for the level of prices. Third, corporate bond spreads become far less responsive to changes in the “pseudo spreads” implied by equity options constructed by Culp et al. (2018). This last result demonstrates that the change in downside risk properties is restricted to, or strongest in, the corporate bond market. These results suggest that expectations of future interventions impact asset price dynamics. This is consistent with the view that the possibility of future purchases in bad states can de-link bond prices from fundamentals which can induce moral hazard by issuers and investors. But it is also consistent with the more benign view that future interventions make the bond market less prone to dislocations during crises.

While we conduct an in-depth study of bond purchases during the COVID-19 crisis, our measurement framework is not specific to this event. We construct the conditional price support function for several other policy announcements for which we have relevant option data. One family are central bank asset purchases: by the Bank of Japan in 2013, the quantitative easing operations in the US from 2008 to 2013, and announced asset purchases by the European Central Bank in 2010 to 2012. Another type of intervention
is direct support to specific institutions: the financial sector bailout in the US in 2008. Finally, we also consider regular monetary policy operations by looking at the response to FOMC announcements. We find that conditional policy plays a pervasive role across all these announcements, albeit with different intensity.

Our results speak to macro finance models that assess the impact of policies that support financial market prices during crashes such as asset purchases or equity injections to the financial sector (e.g., He and Krishnamurthy (2013), Moreira and Savov (2017), Vayanos and Vila (2021)). Quantitative theoretical exercises typically treat the policy implementation as “one-off” events for simplicity and ignore expectations of future policy across states. In contrast, our findings suggest that state-contingent policy is first order to understanding the effectiveness of policy announcements. More on the macro side, our results also relate to the literature on forward guidance and central banking communication starting with the seminal work of Gürkaynak et al. (2004) which shows that central bank statements have powerful effects on long-term yields. Other examples of this literature include Swanson (2011), Hanson and Stein (2015), and Nakamura and Steinsson (2018).

Our results are related to broader work using information in options markets to interpret policy. Kelly et al. (2016b) focus on the price of political uncertainty associated with uncertain actions over a pre-specified date (e.g., elections). Our work instead focuses on inferring conditional policy typically inferred from an unscheduled, unexpected event. Relatedly, Kelly et al. (2016a) use options markets to evaluate government guarantees on the financial sector in the 2008 crisis. Kitsul and Wright (2013) use option prices to assess inflation probabilities. Barraclough et al. (2013) use option prices to inform merger announcements.
1. Measuring Conditional Promises

In this section, we introduce a framework for measuring conditional policy promises. We start by a simple example illustrating how the presence of these promises affects the response of asset prices to policy announcements. The overall market response reveals the combined effect of the announced policy and conditional promises. However, the contingent nature of option contracts sheds light on the states in which promises will be fulfilled. Our method builds on this insight to quantify promises. Specifically, we show how to estimate a price support function: how much is the policy changing prices as a function of the state of the world.

1.1 The Effect of Policy Promises on Asset Prices

Consider the following stylized example with two dates, 0 and 1. At date 0, the initial price of an asset is $p_0$. Under rational expectations, this price is the (risk-neutral) expected value of the date-1 price: $p_0 = E[p_1]$.

No promises. A new policy is unexpectedly announced at date 0: a quantity $Q$ of a policy tool will be used at date 1. The per-unit effectiveness of the policy in moving prices is given by $M$. For example, as will be our main empirical focus, the Fed unexpectedly announces in the middle of a crisis that it will purchase a quantity $Q$ of corporate bonds (the asset) at a future date. In that interpretation, $M$ reflects the price impact per quantity of asset purchased, the inverse elasticity of demand for corporate bonds. Another example would be the announcement of a new fiscal stimulus package. There, $M$ would be the present value of the product of the fiscal multiplier with the pass-through from GDP to corporate profits.

Given the new policy, the price at date 1 will be $p_1' = p_1(1 + MQ)$. Therefore the
post-announcement price becomes

\[ p'_0 = E[p_1](1 + MQ). \] (1)

In other words, the return at announcement, \((p'_0 - p_0)/p_0\), is exactly proportional to \(MQ\). A number of researchers have used this idea to back out the overall effect of purchase policies and the multiplier of prices to purchases.

**Conditional promises.** However, it is not that easy. When the new policy is announced, the market might (rightfully) infer that the policymaker is willing to intervene more strongly if conditions worsen. For example, it could be that the market expected the Fed to purchase even larger amounts to corporate bonds were the COVID-19 crisis to deepen. More broadly, conditional promises can be voluntary or not: on the one hand, the policymaker might want to make the new policy instrument part of their toolkit; on the other hand, they might have opened Pandora’s box and lack the commitment to stop using this instrument in the future. Promises can also be implicit or explicit. On the implicit side, market participants expend large efforts trying to infer the future conduct of monetary policy following FOMC statements. On the explicit side, Mario Draghi, the then-president of the ECB, expressed clearly his willingness to do “whatever it takes” in the midst of the Euro area sovereign debt crisis in 2012.

To illustrate the impact of conditional promises, assume that the policymaker will scale up the policy by an additional amount \(Q^*\) if we are in a state at date 1 where the no-intervention price would fall below a cutoff value \(p^*\). In this situation, the price at date 1 becomes \(p'_1 = p_1(1 + M(Q + 1_{p_1 \leq p^*}Q^*))\). The post-announcement price is

\[ p'_0 = E[p_1] + E[p_1]MQ + E[p_1 \times 1_{p_1 \leq p^*}]MQ^*. \] (2)
We see that both the baseline policy and the implicit promise shape the price response to the announcement. The promise provides an additional boost to the price equal to the product of the additional policy implemented, policy effectiveness, and the contribution of states where the promise is realized to the expected price.

Both effects are intertwined and, based on the price response to the announcement alone, they cannot be separated. In particular, ignoring the presence of promises leads to incorrect inference about the effectiveness of the policy. If an econometrician assumes that only the baseline policy is present and estimates the multiplier by comparing the price response to the announced purchases (or the realized purchases provided the promises are not realized), their estimate will be biased:

\[
M_{\text{estimated}} = M \left( 1 + \frac{E[p_1 \times 1_{p_1 \leq p^*}]}{E[p_1]} \times \frac{Q^*}{Q} \right). \tag{3}
\]

Because the promise provides additional price support, the effectiveness of the policy will be overestimated. How large is the bias? First, the bias depends on how likely are the promises to be implemented, specifically how much the states where the promise is implemented contribute to the initial price. Of course this contribution is always less than 1, and can be small if a crash is unlikely. However, because new policy tools are often used in difficult and uncertain conditions — think of the midst of the COVID-19 crisis — these probabilities are likely non-negligible. Second, the bias depends on the size of the promised policy relative to the baseline amount \( Q^*/Q \). This second term can be sizable, for example much larger than 1. Indeed, if the crash scenarios are dramatic, the policy maker might expend significantly more resources. In the empirical evidence we study later on in this paper, we find that indeed, both the probability of additional support and the strength of additional price support are economically significant. To be
concrete, the corporate bond market increased by about $1 trillion in value when the Fed announced corporate bond purchases in March of 2020 though the Fed ended up only making purchases of around $14 billion. Our estimates suggest that close to half of the response is due to a 5-fold increase in the size of the program in the lowest 20% of states.

The information in option prices. How can one separate the promise from the baseline policy in this case? Option contracts on the asset offer a path forward. Consider for example a call option — a contract paying \( \max(p_1 - K, 0) \) at date 1 — with a large strike price \( K > p^* + \mathcal{M}(Q + Q^*) \). Because this call only pays in states of the world where the promise is not realized, the change in option price at announcement is entirely driven by the baseline promise:

\[
p_0^{\text{call}} - p_0^{\text{call}} = E[\max(p_1(1 + \mathcal{M}Q) - K, 0)] - E[\max(p_1 - K, 0)]. \tag{4}
\]

Conversely, option contracts focusing on the poorest states of the world will respond to the fulfilled promise. A put option with a low strike \( K < p^* - \mathcal{M}(Q + Q^*) \) only pays off in states in which the promise is realized. Then the change in option price at announcement reflects only interventions with the promise:

\[
p_0^{\text{put}} - p_0^{\text{put}} = E[\max(K - p_1(1 + \mathcal{M}(Q + Q^*)), 0)] - E[\max(K - p_1, 0)]. \tag{5}
\]

These two cases highlight that we can learn about the conditional nature of the policy by using options to zoom in on various parts of the state space. One has to go further than this simple intuition to get to quantitative statements. For example, comparing equations (4) and (5) suggests that the presence of policy promises can be detected by “more action” in out-of-the-money puts than out-of-the-money calls. Because these two contracts are very different to start with, more careful calculations are needed to implement
such a comparisons. This is the focus of next section.

1.2 A Method to Estimate Conditional Policy Promises

We present a method to estimate conditional policy promises following the announcement of a new policy using option prices. We introduce a flexible representation of conditional policies and the assumptions underlying its estimation. Then, we explain the two steps necessary to go from option data to a conditional policy.

1.2.1 The conditional price support function.

We maintain the timing assumptions of our motivating example. At date 0, a policy is unexpectedly announced to be implemented at date 1.\(^5\) The policy announcement potentially contains conditional promises. That is, the policy implementation can depend on the realized state of the world at date 1. Our first assumption is that the state of the world at date 1 maps exactly to the date-1 price of the asset absent policy intervention \(p_1\). Given this mapping, the effect of the policy on the price can be represented by a price support function \(g(.)\). The price support function computes how much the price is changed by the policy in each state of the world.

Assumption 1. Price support function. The asset price at date 1 after the policy is announced \(p_1'\) is equal to the no-policy price \(p_1\) increased by a conditional price support \(g(p_1)\).

\[
p_1' = p_1 (1 + g(p_1)).
\]  

This assumption entertains the conditional nature of the announced policy in a flexible way. For example a fixed policy can result in a constant \(g\), while our example from the previous section corresponds to \(g(p) = MQ + MQ^*1_{\{p \leq p^*\}}\). The representation of the

\(^5\)We relax this assumption of a fixed timing when considering extensions of our approach.
policy by a price support function does not imply that the policy acts only on the asset price or is designed to focus on the asset price. Rather, the conditional price support is the information of the policy that we can recover using price information alone. With additional information about the policy — such as \( Q \) or \( M \) in our example — one can link the price support back to specific actions. Another aspect where our assumption has content is the assumption that the conditioning is entirely as a function of the no-policy price. Policymakers, even when they explicitly want to support prices, look at a variety of pieces of information to make decisions. The simplifying assumption reduces this to a unique dimension, capturing intuitively the difference between good and bad states of the world. Using the no-policy price as the conditioning information reflects the aspect of conditioning that is captured by option prices. As we discuss in our empirical work, for this assumption to be plausible it is important to focus on an asset that captures well the information driving the policy studied.

Our goal is to recover the price support function \( g \) from data on option prices. As we discussed earlier, option contracts zoom in on different parts of the state space. Comparing the price of these contracts before and after the announcement reveals how values of the price are changed by the policy. However, one faces two challenges in implementing this idea. First, asset prices are affected not only by actual distributions of outcomes as well as risk adjustments. Said otherwise, option prices only reveal risk-neutral expectations. Second, multiple policy support can lead to the same change in distribution. Next, we introduce two simple assumptions that overcome these issues, and argue they are plausible. We discuss generalizations of these assumptions in Section 1.3.

First, an assumption is necessary about the pricing of the asset and options on it at date 0. We assume pricing by the same risk-neutral distribution over underlying states of the world before and after the policy announcement.

**Assumption 2. Asset pricing.** The same risk-neutral distribution \( F_{p_1} \) over states of the world
prices the asset and options before and after the policy announcement. That is:

i) Before the announcement, for all functions \( h \), a claim paying \( h(p_1) \) at date 1 has price
\[
\int h(p_1) dF_{p_1}(p_1) = E[h(p_1)].
\]

ii) After the announcement, for all functions \( h \), a claim paying \( h(p'_1) = h(p_1(1 + g(p_1))) \) at date 1 has price
\[
\int h(p_1(1 + g(p_1))) dF_{p_1}(p_1) = E[h(p_1(1 + g(p_1)))].
\]

Underlying this assumption is the simple view that policies do not change the fundamental randomness of the world. Instead, they change what happens in various states of the world. This is standard in the setup of dynamic stochastic models: start with a primitive filtration and probability measure, and derive equilibrium outcomes. We go one step further and assume a constant risk-neutral probability measure. This assumption brings some flexibility: we do not impose coincidence of risk-neutral and historical probabilities, nor do we assume the ability to recover historical probabilities from prices. However it also has some bite: we are implicitly assuming that the stochastic discount factor between date 0 and date 1 is unaffected by the policy. When looking at the data, we explore ways to assess the plausibility of this assumption. For example, one can check whether a related asset for which the policy has no direct effect responded to the announcement. In the case of corporate bond purchases, we compare high-yield bonds, which were not initially targeted, to investment-grade bonds which were. A shift in pricing kernel perspective would imply large movements in the risk-neutral distribution of high-yield bonds while conditional policy targeted at investment-grade would not. Interpretations of the data with a more segmented view of financial markets would limit the usefulness of this comparison, and suggest risk-premium effects of asset purchases. We show how to address such situations in Section 1.3.

It is also worth pointing out that the framework does not put restrictions on the determinants of prices at date 1 or after that. In particular, we do not take a stand on the mechanisms through which the purchases at date 1 affect the price (where \( M \) comes
from). An appealing mechanism is through effects of purchases on risk premia *from date 1 onwards*. Section 6 presents a model of this mechanism. This dimension is distinct from the properties of pricing between date 0 and 1 in Assumption 2.

Second, we need to impose some regularity on the price support function \( g(\cdot) \) to be able to estimate it from the data.

**Assumption 3. Order-preserving policy.** The post-policy price \( p'_1 = p_1(1 + g(p_1)) \) is increasing in the no-policy price \( p_1 \).

Said otherwise, we assume that the policy does not change the ranking of the asset price across states. This assumption is plausible. For example, the policy does not support the price so much in (no-policy) bad states that it becomes higher than in good states. There is also a sense in which such policies are efficient. Consider a policy-maker who targets a given distribution of the price. Multiple price support functions can lead to this distribution, but an order-preserving policy minimizes the use of large changes in prices. Another take on this assumption is that it leads to conservative estimates of the conditional nature of the policy. This is because a policy with order switching leads to more asymmetry across states; bad states have to be relatively supported even more to make them switch with good states.

### 1.2.2 Estimation strategy

We show how to use the behavior of option prices around the policy announcement to recover the conditional price support function \( g(\cdot) \). First, we obtain the distributions of the price with and without policy, \( p_1 \) and \( p'_1 \). Second, we solve the transport problem of inverting the price support to move from one distribution to the other.

**Step 1: Recovering the future price distribution.** We follow the approach of Breen-den and Litzenberger (1978) to recover the distribution of the future price of the asset.
They show that observation of option prices (calls or puts) across strikes allow you to infer the distribution of the price of the underlying. Let us review this result. Denote $Put(p_1, K) = \max(K - p_1, 0)$ the payoff of a put with strike $K$ when the price is equal to $p_1$. The difference between the payoff functions of two puts with close strikes approximates a step function at that point. Figure 1 illustrates this result.

Figure 1: Using a Put Portfolio to Approximate an Indicator Function
The left panel reports the payoff of puts with strike $-1.2$ (solid line) and $-0.8$ (dashed line). The right panel reports the payoff of a portfolio long $(-0.8 - -1.2)^{-1} = 2.5$ units of the high-strike put, and short 2.5 units of the low-strike put.

The left panel plots the payoff function for two strikes close to $-1$: $-1.2$ and $0.8$ respectively. The right panel reports the difference between these payoffs scaled by the difference in strike $0.4$. Equivalently, this is the payoff of a portfolio long 2.5 units of the high-strike put and short 2.5 units of the low price put. This difference is very close to a step function equal to 1 below $-1$ and 0 above. Formally, this observation corresponds to

$$\frac{dPut(p_1, K)}{dK} = \lim_{h \to 0} \frac{Put(p_1, K + h/2) - Put(p_1, K - h/2)}{h} = 1_{\{p_1 < K\}}$$

(7)

Turning back to date 0, this implies that the slope of the put prices with respect to the price is equal to the expected value of the indicator function. This expected value is exactly the
probability that \( p_1 \) is less than \( K \), the cumulative distribution function (CDF) \( F_{p_1}(K) \).

The first step of our method is to apply this idea to the option curve (the relation between strike and put price) before and after the announcement. Doing so allows to recover the cumulative distribution function of the no-policy price \( p_1 \) and the post-policy price \( p_1' \), which we denote \( F_{p_1} \) and \( F_{p_1}' \), respectively. In practice, one cannot observe option prices for all strikes, but instead for a finite number of specific strikes. We follow the common practice of interpolating these prices between strikes, specifically as described in Malz (2014). However, we are careful to not extrapolate the curves. As a consequence we only obtain the CDF for finite intervals, which we denote \( I \) and \( I' \). While this limitation precludes the usual application of the result of Breeden and Litzenberger (1978) (pricing arbitrary option contracts), we will see next that we are still able to recover exactly the function \( g(\cdot) \), only over a finite interval.

**Step 2: Solving the transport problem.** Once we have the two distributions, the next task is to find the conditional price support \( g(\cdot) \) that explains the change in distribution. This type of problem is known as a transport problem: how should we move all the values of a random variable to obtain a new distribution? The order-preserving property (assumption 3) imposes that this transport is monotone. This feature is enough to guarantee existence and uniqueness (up to probability 0 events) of a solution \( g(\cdot) \). There is a simple method to construct this mapping. Start from a value \( x \) and compute the corresponding CDF \( F_{p_1}(x) \). Then, because the order of states of the world is unchanged, this value must map to another value \( y \) that falls at the same ranking, that is, the same CDF value. This corresponds to finding \( y \) such that \( F_{p_1}'(y) = F_{p_1}(x) \). Once we find this price mapping, we simply have: \( y = x + g(x) \), which reveals \( g(x) \). For example, assume your initial value is the 20th percentile of the distribution of \( p_1 \). The post-policy price corresponding to this state is the 20th percentile of the distribution of \( p_1' \). The price support function is the change in price necessary to move from this initial value to the post-policy
price. The following proposition summarizes this calculation.

**Proposition 1.** The unique order-preserving policy price support function to go from $F_{p_1}$ to $F_{p_1'}$ is equal to

$$g(p_1) = \frac{F_{p_1}^{-1}(F_{p_1}(p_1)) - p_1}{p_1}. \quad (8)$$

Going back to the issue of implementation, we only observe the CDFs on finite intervals. Examining this formula tells us that we can only recover the function $g$ for states for which we can measure both CDFs. That is, if we can measure the 20th percentile of both CDFs, we can obtain the mapping for this percentile. Formally, this implies that we can solve the function $g(.)$ over the domain $F_{p_1}^{-1}(F_{p_1}(I) \cap F_{p_1'}(I'))$.

Figure 2 illustrates how changes in distribution map to the price support function. We consider two extreme cases of conditional promises. Panel A and B report the probability density functions (PDFs) before and after policy announcement and the price support function for a constant price support. In this case, there is no conditional promise: the price is increased by the same amount no matter what happens. The whole distribution simply experiences a parallel shift to the right. Panel C and D report the same quantities but for a price floor, that is $p_1' = \max(p_1, p)$ for some threshold $p$. This is the most extreme case of conditional promise: if the price falls too low absent intervention, the policymaker does whatever it takes to ensure it stays up to the threshold. In terms of distribution we see no change above the threshold but all the probability below the threshold becomes accumulated right at the threshold. This corresponds to a sharply decreasing function $g(p)$ below the threshold. For each unit that the no-policy price falls further down, the price gets supported by one more unit to stay at the threshold. This slope of $-1$ in this range is actually the largest permitted while maintaining the order-preserving property. Interestingly this price support function coincides exactly with a put option payoff, lend-
Figure 2: Examples of Distributions and Conditional Price Support Policies
The top row considers a constant price support: the price is increased by the same amount in all states. The bottom row considers a price floor: the price is forced to stay above a threshold $p$. The left panels report the PDF of the date-1 price before (solid line) and after (dashed line) the policy announcement. The right panels report the corresponding price support functions $g(.)$.

1.3 Relaxing the Pricing Assumption
Before turning to the data, we show two ways to relax Assumption 2 and entertain a more flexible impact of the policy intervention on the pricing kernel between date 0 and 1.
1.3.1 Testing the null hypothesis of a constant price support

One path to entertain more generality than Assumption 2 is to ask a more restrictive question than a full recovery of $g$. Specifically, we focus on the question of whether the price support function $g(.)$ is constant. We first introduce some additional notation to consider a broader set of pricing kernels. First, assume that the historical distribution over states of the world $F^P(p_1)$ does not change before and after the announcement. Then, assume that all financial contracts are priced by a pricing kernel $M(p_1)$ before the announcement and $M'(p_1)$ after the announcement. The special case of $M = M'$ corresponds to Assumption 2.

The next proposition shows that the approach of Proposition 1 correctly recovers a constant price support for a large family of pricing kernels.

**Proposition 2.** If the true price support function $g(.)$ is constant and the pricing kernel before and after the intervention can be written:

\[
M = \Theta(p_1, p_1/p_0), \\
M' = \Theta(p_1', p_1'/p_0')
\]

for the same function $\Theta$, then equation (8) correctly recovers the price support function.

The empirical content of this proposition is that if the pricing kernel is within this family, then a finding of a non-constant $g$ reveals the presence of state contingency in the price support. What is this family of pricing kernels? In words, they depend on two elements: the state of the world at date 1 ($p_1$), and the return of the asset between date 0 and date 1 ($p_1/p_0$ before the announcement, $p_1'/p_0'$ after). This second component encodes in a flexible way the fact that the asset return matters for the pricing kernel. For example, a CRRA model with the asset representing total wealth is $\Theta(s, R) = R^{-\gamma}$, with $\gamma$ the coefficient of risk aversion. Many asset pricing models also feature pricing kernel
determined by the asset returns: other utility functions, loss aversion, etc.

1.3.2 Adjusting estimates for endogenous risk premia

By taking a stand on the dependency of the pricing kernel to the properties of returns, we can go further and provide estimates of the price support function that take into account this effect. Specifically, we replace Assumption 2 by the following.

**Assumption 4. Endogenous pricing kernel.** Assume that the pricing kernel is \( M = \theta(p_1) \frac{p_0}{p_1} \) before the announcement, and \( M' = \theta(p_1) \frac{p_0'}{p_1} \) after the announcement.

Under this assumption the pricing kernel can be affected by the announcement, because the distribution of the asset return between date 0 and 1 is changed. Specifically, it assumes that the part of the pricing kernel that is endogenous to returns behave as for a log-utility investor with all her wealth invested in the asset. While this is a somewhat specific case, we will show that in our empirical application that implies a large risk premium, which is also very responsive to the properties of the asset. Therefore, it leads to conservative estimates of the price support \( g(.) \) accounting for risk premium effects.

The following proposition shows how to recover the price support function when replacing Assumption 2 by Assumption 4.

**Proposition 3.** Under Assumptions 1, 2, and 4, the price support function \( g(.) \) is the unique solution to (8), where the risk-neutral distribution is replaced by the numeraire-equivalent distribution \( F^N \), which can also be obtained from option prices.

2. Data

We use a variety of financial instruments that have traded option contracts referenced to them and were the direct target of policy announcements. These include options on
the iShares investment grade corporate bond ETF (LQD), the iShares high yield corporate bond ETF (HYG), the future on the S&P500 index, the future on the ten year maturity Treasury bond, the financial sector ETF (XLF), the future on the Nikkei index, and the CDX investment grade credit basket spread. We aim to use options of maturities close to three months. Ideally one would like longer maturity options given the nature of implicit promises are often quite durable, but in practice the liquidity in the vast majority of these markets is heavily concentrated around or below three months.

Our approach to recover the state price density follows Malz (2014). We obtain prices and use the standard Black-Scholes formula to translate prices into implied volatilities. We then fit a cubic spline to the implied volatility curve. Armed with this function we can easily compute derivatives of option prices numerically for the range of liquid strikes. Specifically we evaluate the Black-Scholes formula for different strikes and the associated implied volatilities. We then compute first and second differences to recover the implied cumulative distribution function or state-price density.

3. Corporate Bond Purchases in 2020

3.1 Background and Effect on Prices

On March 23rd, 2020 the Federal Reserve unveiled facilities that would purchase investment grade corporate bonds and corporate bonds ETFs through the Secondary and Primary Market Corporate Credit Facility (SMCCF and PMCCF). This announcement was important because it was the first time the Fed had directly targeted the corporate bond market. As Haddad et al. (2021) show, the announcement came at a time when corporate bond prices were depressed (investment grade bond indices had fallen over 20% from February to March 23rd) and dislocated (very safe investment grade debt was trading at steep discounts to Treasuries even taking into account credit risk measured from the CDS
These facilities took time to set up so that no bonds were purchased for several months, and there was a total (announced) capacity of $300 billion.

The announcement of the SMCCF and PMCCF had a significant and immediate impact on corporate bond prices. Table 1 shows the return response for the iShares investment grade corporate bond ETF (LQD) using a window of one to three days around the announcement. This large ETF captures the broad universe of investment-grade corporate bonds and is effectively a leading investment grade bond price index. The ETF has the advantage that it summarizes the impact of the announcement on corporate bond prices without having to obtain transaction level data of individual bonds which trade less frequently. The cumulative three-day announcement window return is 14%, meaning the Fed announcement had a large effect on corporate bond prices. In terms of abnormal excess returns (with controls for high-yield and the stock market) the response is still substantial at around 10%. The overall return of 14% translates into around $1 trillion increase in market value for investment grade corporate bonds. Using a one-day window for the announcement drops the raw return and abnormal excess return to about 7%. The shorter one-day window provides better identification at the cost that it may take the market time to process the announcement. While we use event windows here measured in days, Haddad et al. (2021) show in high frequency intraday data that prices increased right at the time of the announcement, and that other news was unlikely a factor given other assets such as high yield corporate bonds, stocks, or Treasury bonds showed little movement.

Most importantly for this paper, since the announcement of the facility was a new and unexpected intervention into corporate bonds, it is natural that the announcement shifted market participants expectations of further interventions if the situation deteri-
Table 1: Announcement Effect

This table shows the return on an investment-grade corporate bond ETF (LQD) on the announcement on March 23rd 2020 by the Fed to purchase corporate bonds. The first two columns use a three day announcement window and the coefficient represents the cumulative daily return on the announcement. The second column uses the excess return over TLT, a long term Treasury ETF, and controls for excess returns on high yield bonds and the stock market so that the announcement effect is the cumulative abnormal return. The last two columns repeat this same exercise over a one-day window.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Three days</td>
<td>Three days</td>
<td>One day</td>
<td>One day</td>
</tr>
<tr>
<td>$Announce_t$</td>
<td>14.17***</td>
<td>10.27**</td>
<td>7.37***</td>
<td>6.63***</td>
</tr>
<tr>
<td></td>
<td>(3.78)</td>
<td>(1.25)</td>
<td>(0.01)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>$r_{HighYield}^t$</td>
<td>0.54***</td>
<td>0.55***</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>$r_{SP500}^t$</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.02**</td>
<td>-0.01</td>
<td>2.988</td>
<td>2.988</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2,988</td>
<td>2,988</td>
<td>2,988</td>
<td>2,988</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.11</td>
<td>0.87</td>
<td>0.09</td>
<td>0.87</td>
</tr>
</tbody>
</table>

While it the total size of purchases that would be made was left unclear, the announced total capacity of purchases on March 23rd was $300 billion. Ultimately, only around $15 billion of purchases were made, around 0.2% of the market capitalization of investment grade corporate bonds. It is initially surprising that the corporate bond market increased by $0.5-1 trillion on announcement given so few purchases were made. A reasonable view is that purchases would have been larger had the bond market fallen further and that that this drives part of the recovery. The most natural place to look for these expectations is to see how option prices on LQD changed around the announcement. A straightforward implication of the conditional purchases view is that it should disproportionately reduce left tail events in corporate bond markets which show up directly in option prices.
3.2 Option Prices and Changes in the Distribution of Corporate Bonds

To explore the tail risk view of conditional purchases, Figure 3 plots implied volatility curve for three month options on the investment grade bond ETF (LQD) on the trading day before the announcement was made compared to the end of the day the announcement was made. While implied volatility dropped notably, the drop was most pronounced in the left tail (deltas below 30%). This finding already suggests market expectations of a stronger intervention if corporate bond prices fell further. This left tail drop was even more pronounced over a longer three-day window.

![Implied Volatility Curve](image)

**Figure 3: Implied volatility before and after announcement.**
This figure provides implied volatility from options on an Investment-Grade corporate bond ETF (LQD) on March 20th and 23rd, 2020 as a function of the option delta. Time to maturity is 3 months.

We follow Malz (2014) to convert this change in the implied volatility curve directly to changes in the distribution of corporate bond prices. This approach follows the insight in Breeden and Litzenberger (1978) that option prices can be used to recover risk-neutral
distributions (see also Figlewski (2010)). Figure 4 shows the implied cumulative distribution function (CDF) for future values of investment-grade bonds on these two days based on option prices. More specifically, we capture the (risk-neutral) distribution of the potential price for investment-grade bonds in three months using options with a three month maturity but with varying moneyness. We compare this distribution before and after the announcement was made. The figure reveals a clear rightward shift in this overall distribution, but again most notably there is significantly more action in left tail events. Before the event there was about a 15% chance that the value of investment-grade bonds would drop by 30% or more. This state of the world is vastly reduced after the policy is announced.

**Figure 4: CDF based on option prices.**
This figure shows the implied CDF of future returns on corporate bonds extracted from option prices.

---

7Specifically, the method of Malz (2014) fits a cubic spline through the observed points on the implied volatility curve and then differentiates this to arrive at the CDF. The spline is clamped as explained in Malz (2014) to avoid potential arbitrages.
3.3 Conditional Price Support

We now use this information to directly capture the conditional price effects of the Fed intervention. Let $g(p)$ denote the conditional price support of the Fed policy as a function of the non-intervention price $p$. That is, $p$ denotes the price of investment grade corporate bonds absent any Fed intervention and should be thought of as capturing the underlying fundamental state of the corporate bond market. We interpret $g(p)$ as the total price effects of any Fed intervention. For example, if the Fed purchases more bonds in distress periods when the price $p$ is low, then $g(p)$ will be declining in $p$. Notice in this case $g(p)$ will shrink the left tail of the distribution of bond prices. In contrast, an unconditional promise to purchase bonds with a constant price impact of purchases would mean $g(p)$ were a constant, which would simply shift the entire distribution in parallel to the right. The new CDF that includes the effects from conditional purchases is based on the post intervention price which we call $p'$. We then have $p' = p(1 + g(p))$. Thus, by using the behavior of the CDF pre and post announcement we can find $g(p)$ and hence assess the impact of the Fed as a function of the non-intervention price $p$.

Figure 5 shows the implied effect of the policies on prices by plotting the function $g(p)$ expressed as a percentage of the no-policy price $p$. We can use this plot to gauge the magnitudes of conditional Fed intervention. First, $g(p)$ is not flat as an unconditional price support would imply, but is strongly downward sloping particularly for low values of the price. At values where the price drops 20-30%, the slope of the price support function is nearly -1 which suggests an effect close to a price floor (e.g., each dollar lost in this region is offset by conditional price support by the Fed). The price support strongly resembles a put option, lending support to the view of a “policy put.” This suggests that the bond market believed stronger intervention would occur if the situation in the corporate bond market deteriorated. To gauge magnitudes it is worth picking two points on the figure. If, absent any policy intervention, prices would have increased by 20%, the Fed would
push the price up by an additional 1.5%. If, prices would have declined by 30% instead, the Fed would push the price up by over 35%. Thus, the asymmetry is economically very large.

Figure 5: Effect on prices.
This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price, normalized to 100 before announcement.

The gray shaded region in Figure 5 gives the 95% confidence interval. We construct this by bootstrapping daily pairs of implied volatility curves for options on the invest-grade bond ETF. From these we can construct our price support function $g(p)$ at each day. We compute the price support in units of standard deviation based on at the money implied volatility on the initial day. This deals with the fact that implied volatility is much higher around the Fed announcement than on other days. We then scale these up based on at the money implied volatility on the trading day before the announcement was made. The confidence interval indicates statistically significant price support for the
left tail of the distribution, and only insignificant estimates of price support at the upper end.

**Revisiting Announcement Effects**

We next compute the fraction of the initial announcement return stemming from conditional promises. Recall that $E[g(p)]$ is equal to the one-day announcement return of 7.4% shown earlier. To gauge the effects of this return coming from state-contingent policy in the left tail, suppose the Fed policy was not conditional. Specifically, assume that in the left tail the Fed simply supported prices by a constant amount equal to $g(100)$, the price support expected absent any change in the no-policy price. Let $\tilde{g}(p) = g(p)$ when $p > 100$ and $\tilde{g}(p) = g(100)$ when $p \leq 100$. We compute $E[\tilde{g}(p)]$ using the implied probabilities of each state which gives the change in price with no policy put, and thus the effect due to the policy put is $E[g(p)] - E[\tilde{g}(p)]$. We find that about 53% of the overall effect on prices comes from conditional policy to support prices more heavily in adverse states. Thus, the policy put option *alone*, with no commitment to purchase anything unless the situation deteriorated, boosted the total bond market value by around 3.9% or about $275 billion.

**From Price Support to Quantities**

Our main methodology delivers conditional price support, but does not specify how this price support is achieved in terms of quantities of bonds purchased in different states. We make additional assumptions to interpret our numbers in terms of quantities purchased. Assume the price impact of purchases in the bond market is a constant, $M$, so that the total change in bond market value of purchases are $g(p) = M \times q(p)$ where $q(p)$ represents the total quantity of bonds or ETFs purchased by the Fed as a function of the no-policy price $p$. We express the quantity purchased $q(p)$ as a fraction of the total market value of bonds outstanding (because we express price moves in percent rather than total changes in bond market value, the purchases are then also in percent of total value of bonds outstanding). First, we focus on relative statements that don’t involve taking a
stand on \( M \). As a baseline, \( g(p) \) is around 7% when the price without purchases remains at its current level of 100 (e.g. no change in underlying state). But the effect on prices \( g(p) \) is 40% for losses of corporate bonds in the range of 30%. With a constant multiplier \( M \), this implies over 5 times as many bonds being purchased in these bad states of the world compared to the baseline case of no change. Comparing to good states where corporate bonds appreciate by 10% or more, we see purchases up to 30 time more than crash states. Hence, there is a very strong expectation for significantly more intervention if the bond market were to deteriorate.

Gauging overall quantitative magnitudes on the dollar amount of bonds purchased by the Fed in these states requires taking a stronger stand on the multiplier \( M \). A low choice for this number (elastic bond market) implies very large purchases to achieve such dramatic price effects. We proceed by (1) using estimates for \( M \) elsewhere in the literature, (2) using the actual amount of bonds purchased and the realized state three months later to infer \( M \). For (2) we note that in June, corresponding to three months after the announcements were made, LQD was at a value of 120 relative to the baseline of 100, while Fed purchases of bonds and bond ETFs were only about $15 billion. Since \( g(p) \) in this state is about 1.7%, this suggests a purchase of $15 billion had a 1.7% effect on bond prices. The total size of the corporate bond market is about $7 trillion, thus implying a multiplier \( M = g(p)/\text{purchase}(p) = 1.7%/(15 \text{ billion}/7 \text{ trillion}) \approx 8 \). This implies a large multiplier, but note that using this number then implies smaller required purchases to achieve large price effects in the left tail. Applying this number to the state where the no-policy price fell by 30% would imply purchases of more than $300 billion in these states, exactly the size of the facility.

These findings, of significantly larger quantities purchased in bad states, accord with statements from the Fed. In Senate testimony in June 2020, Jerome Powell stated “markets are functioning pretty well, so our purchases will be at the bottom end of the range that we have written down.” The direct implication is that purchases would have been
significantly larger had these markets not been functioning well, presumably coinciding with much larger credit spreads.

![Figure 6: Implied Purchases Based on Multiplier.](image)

This figure plots implied purchases (in billions of USD) as a function of the future distribution of prices before the intervention (normalized to be 100 before the announcement). The multiplier is chosen to match the observed price increase in the state where the Fed actually made purchases of $15 billion.

We note that this value of the multiplier $M$ matches is at the upper end of estimates taken elsewhere in the literature. Gabaix and Koijen (2021) estimate $M \approx 5$ in the stock market. If we use this value instead, it requires higher implied purchases in dollar terms. That is, in the state where bond prices fell by 30% purchases would need to be around $500$ billion which would be close to 7% of the total corporate bond market and a dramatic increase in the size of the Fed programs. Figure 6 plots implied purchases in billions of dollars using this multiplier.

Calibrating to smaller values for $M$ (a more elastic bond market) would imply even larger numbers. For example, $M = 1$ would imply purchases close to 35% of the total
corporate bond market in bad states of the world. We acknowledge that a specific value for $M$ is potentially controversial. But by providing the numbers of the total response in various states, readers can easily infer how much conditional purchases they would need to believe for a given multiplier. Given all the evidence we have provided, the most natural takeaway is for a highly inelastic bond market combined with a commitment to dramatically increase the size of the program conditional on bad realizations for corporate bonds.

3.4 In Which States was the Fed Expected to Buy?

We have outlined conditional purchases by the Fed as a function of the underlying price of the corporate bond market. However, so far, we have taken no stand on whether purchases in low price states are due to a deterioration in credit risk, high risk-free interest rates, or high dislocations of corporate bond prices from fundamentals.

We shed light on this by using options on Treasuries (to capture shifts in risk-free interest rates) and options on CDS indices (to capture shifts in underlying credit risk). It is straightforward to map the price of a corporate bond into the price of an equivalent duration Treasury bond, a credit risk component (captured by prices of CDS), and a component which we call “dislocations” affected by moves in the CDS bond basis. We denote the synthetic corporate bond as the bond price implied by the Treasury yield curve and corresponding CDS prices. We recover the distribution of this synthetic bond by using the option prices for Treasuries and the investment grade CDX index by assuming a correlation between the CDX and Treasuries equal to the historical average and using copula functions following Haugh (2016). Our main finding is that the intervention massively reduces the basis risk – the risk that the cash-synthetic arbitrage would widen substantially. This again equates with statements by Jerome Powell that linked the amount of purchases that would be made with corporate bond market functioning.
**Figure 7: Distribution of the CDS bond basis.**

This figure plots the CDF of corporate bond prices minus the price of a synthetic corporate bond constructed from CDS and Treasury options.

Figure 7 plots the distribution of the basis, defined as the dislocation between the cash market and the synthetic. Specifically, let $\text{basis} = p_{\text{cash}} - p_{\text{Treas}} - p_{\text{CDS}}$ where $p_{\text{cash}}$ is the price of the corporate bond ETF, $p_{\text{Treas}}$ is the price of a duration matched Treasury, and $p_{\text{CDS}}$ is the price of the credit risk component of investment grade bonds inferred from CDS prices. The main finding highlighted in the Figure is that the intervention dramatically shifts the tail of the basis distribution, while also shifting the whole distribution to the right (shrinking the overall basis). This is consistent with stronger Fed intervention in states where the corporate bond market is highly dislocated so that a large basis opens up. The 10th percentile of the distribution shifts from a -60% to -20% drop in corporate bond prices relative to the synthetic price of the corporate bond.
3.5 Comparison to High-Yield

Importantly, in Figure 8 we contrast the effects on investment grade bonds with those for high yield, using options on the HYG ETF (the exact counterpart to the LQD ETF that captures investment grade). The upper right panel shows that, over a one-day window, the overall returns for high yield are actually slightly negative. If anything, the pattern is also upward sloping, meaning less price support at low prices and vice versa. These results are useful for two reasons. First, they suggest that the announcement didn’t coincide with other macroeconomic news affecting corporate bond markets, since the effects are strongly concentrated in investment-grade bonds which were the target of the purchases. Second, and more importantly, they speak to the issue of changes in the pricing kernel partially driving our results.

These results cut strongly against a broader change in pricing kernel or price of risk view to understand our results. Specifically, since we work with risk-neutral distributions, a concern is whether our results reflect implicit promises or a change in the pricing kernel (e.g., of a representative agent) that dramatically lowers the broad price of risk for bad outcomes. A lowering of the price of risk would show up in high-yield bonds as well, which we do not see over this short window.

In the Appendix, we show robustness to using a longer window in our event study. Our main results use one day which tightens identification. However, it could also be reasonable to allow more time for markets to react at the cost of tighter identification since a longer period means that other shocks could be affecting markets. While magnitudes are slightly larger compared to the results in the one-day window, the asymmetric effect is similar.
3.6 Evidence from April 9th High-Yield Announcement

The announcement of corporate bond purchases on March 23rd focused on investment grade bonds. However, the Fed made an additional announcement on April 9th, 2020, that expanded the facilities to include high-yield bonds. If this announcement contains implicit promises, we would expect them to show up particularly in high-yield bonds. Figure 9 plots the price support from this announcement following our same methodology applied to options on the high-yield ETF (HYG). We see the same effects of asymmetry: price support is very high for low prices, peaking at over 10%, but is much lower at around 5% for higher levels of prices. This provides strong support for implicit promises boosting the value of high-yield bonds. In contrast, investment-grade is now much flatter, consistent with this announcement not reflecting any additional promises to investment-grade.
Figure 9: High-Yield Announcement, April 9th, 2020. Effect on prices.
This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price, normalized to 100 before announcement.

We now turn to the long-run effects of the Fed intervention by studying the behavior of corporate bond tail risk after the programs are implemented. While we have already shown this tail risk falls when the Fed initially announces it will intervene, we now assess whether tail risk is less sensitive to economic conditions going forward. These longer-term effects are not easily captured in our earlier framework which focuses on conditional promises over shorter maturities at which we have option data. We take a simple approach to address this. First, we compute a tail risk index for corporate bonds using the slope of the implied volatility curve. We take implied volatility for delta of 90 minus the implied volatility for delta of 10 as a measure of tail risk. We then take the same tail risk measure but using S&P500 index options and options on the investment grade CDX index.

Table 2 shows that tail risk changed after the announcements and that corporate bond markets appeared less sensitive to tail risk in equity or CDS markets. Specifically, we regress the corporate bond tail risk on tail risk in equities and CDS markets using daily data from 2010 onward (for CDS, we only have data from 2015 onward). We then include a “post” dummy interaction term for the period after April 9th, 2020 when the Fed had already announced the expansion of its corporate bond facilities. Notably, in the period prior to this, corporate bond tail risk and equity market tail risk co-move strongly so that tail risk in corporate bonds was highly sensitive to tail risk in equity markets. After the interventions occurred, this sensitivity dropped dramatically. The sum of the two coefficients represents the total sensitivity in the post period and actually goes slightly negative. But the main effect we focus on is that the post interaction term is strongly negative and statistically significant so that corporate bond tail risk becomes much less
Table 2: Long Term Effects on Corporate Bond Tail Risk

This table measures the sensitivity of tail risk in corporate bond markets to tail risk in the stock market (using S&P500 index options) and CDS market (using options on the investment grade CDX index) in daily data from 2010-2021. The dummy “post” equal 1 after April 9th, 2020, the dummy “covid” equals 1 from February 1st, 2020 to April 9th, 2020. Interaction effects capture whether this sensitivity is lower after Fed interventions. Robust standard errors given in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tail(_t^\text{SP500})</td>
<td>0.59***</td>
<td>0.43***</td>
<td>0.27***</td>
<td>0.14***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.02)</td>
<td>(0.04)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Tail(_t^\text{SP500}) \times post</td>
<td>-0.78***</td>
<td>-0.63***</td>
<td>-0.37***</td>
<td>-0.24***</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.05)</td>
<td>(0.04)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Tail(_t^\text{SP500}) \times covid</td>
<td>0.68***</td>
<td>0.68***</td>
<td>0.90***</td>
<td>0.90***</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.16)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>Tail(_t^\text{CDS})</td>
<td></td>
<td>0.27***</td>
<td>0.14***</td>
<td>0.35***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Tail(_t^\text{CDS}) \times post</td>
<td></td>
<td>-0.37***</td>
<td>-0.24***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.04)</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Tail(_t^\text{CDS}) \times covid</td>
<td></td>
<td>0.90***</td>
<td>0.90***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.16)</td>
<td>(0.16)</td>
<td></td>
</tr>
<tr>
<td>post</td>
<td>0.16***</td>
<td>0.14***</td>
<td>-0.06***</td>
<td>-0.02*</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>covid</td>
<td></td>
<td>-0.12***</td>
<td></td>
<td>0.35***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.03)</td>
<td></td>
<td>(0.06)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.04***</td>
<td>-0.02***</td>
<td>0.11***</td>
<td>0.06***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Observations</td>
<td>2,769</td>
<td>2,769</td>
<td>1,510</td>
<td>1,510</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.25</td>
<td>0.29</td>
<td>0.26</td>
<td>0.44</td>
</tr>
</tbody>
</table>

sensitive to broader tail risk in the economy. This is consistent with the view that there would be future further interventions to support corporate bond prices if there were a crash in financial markets. We find similar results using the CDS index in place of the stock market as a gauge of overall economic tail risk. Finally, the results in the pre-period are not driven by extreme behavior during the acute phase of COVID on financial markets where all tail risk measures spike. To show this, we add a COVID dummy, equal to 1 for the period of February 1st, 2020 to April 9th, 2020. Including an interaction with this dummy doesn’t change our conclusions, and in this case the non-interacted coefficient measures the sensitivity of corporate bond tail risk to other tail risk excluding the COVID episode (e.g., from 2010-early 2020).
Panel A of Table 3 does a similar exercise but uses corporate bond excess returns in place of tail risk, and gauges the sensitivity of these returns to changes in the VIX. Excess returns are taken as the daily return on LQD over the daily return on TLT (an ETF that tracks Treasuries). Before interventions, corporate bond returns were very sensitive to changes in the VIX: higher VIX was associated with lower returns. After the intervention returns became about half as sensitive to changes in the VIX. Again, this is suggestive of longer term effects of interventions on expectations. If the Fed is expected to intervene in bad states then returns become less sensitive to factors that adversely affect corporate bond prices. These results also related to Collin-Dufresne et al. (2021) who use a structural model to assess credit index options compared to equity options. They find a divergence between the two during COVID, consistent with our reduced form evidence here.

Panel B of Table 3 instead uses monthly data on option-based pseudo credit spreads from Culp et al. (2018). These are credit spreads directly implied by equity options and Treasuries. We use the two year maturity investment grade pseudo credit spread from Culp et al. (2018) (see The Credit Risk Lab). We then compare this to the Bank of America investment grade option adjusted spread index for maturities between one and three years taken from Fred. We take changes in actual credit spreads and regress them on changes in pseudo spreads. In the period after interventions, credit spread changes are far less sensitive to changes in option-based credit spreads, implying credit risk reflected in equity options is not reflected in actual investment grade credit spreads after interventions. A drawback of this data is that it is only available monthly, though an advantage is that the measure corresponds exactly to how credit spreads should behave based on the risk reflected in equity markets.

We plot the difference in actual credit spreads vs pseudo spreads in Figure 10. From 2010-2020 the two spreads track each other quite well. During early 2020 when the COVID-19 crisis hit, actual spreads for investment grade spiked well beyond those implied by equity market options. This is consistent with investment grade bond prices
Table 3: Long Term Effects on Corporate Bond Prices

Panel A measures the sensitivity of daily corporate bond excess returns to daily changes in the VIX. Panel B measures the sensitivity of monthly changes in corporate bond spreads to changes in pseudo bond spreads implied by equity options from Culp et al. (2018). The dummy “post” equal 1 after April 9th, 2020, the dummy “covid” equals 1 from February 1st, 2020 to April 9th, 2020. Interaction effects capture whether this sensitivity is lower after Fed interventions. Robust standard errors given in parentheses.

Panel A: Corp Bond Returns

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \Delta VIX_t )</td>
<td>-0.21***</td>
<td>-0.20***</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>( \Delta VIX_t \times \text{post} )</td>
<td>0.10***</td>
<td>0.08***</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>( \Delta VIX_t \times \text{covid} )</td>
<td>-0.05</td>
<td>-0.12</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>post</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>covid</td>
<td>-0.12</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Observations</td>
<td>2,987</td>
<td>2,987</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.26</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Panel B: Credit Spreads and Option-Based Pseudo Spreads

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \Delta \text{pseudo}_t )</td>
<td>0.41**</td>
<td>0.16***</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>( \Delta \text{pseudo}_t \times \text{post} )</td>
<td>-0.62***</td>
<td>-0.37***</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>( \Delta \text{pseudo}_t \times \text{covid} )</td>
<td>1.74***</td>
<td>-0.10**</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>post</td>
<td>-0.11**</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>covid</td>
<td>0.08</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.23)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.00</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Observations</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.22</td>
<td>0.69</td>
</tr>
</tbody>
</table>

becoming abnormally depressed in this episode. However, following the Fed’s intervention and the recovery, investment-grade spreads became quite low, and in fact reached their lowest point at any time over to 2010-2020 window. In contrast, equity markets still featured substantial volatility, implying higher than usual default risk. This keeps pseudo
spreads elevated even after the Fed intervention. This large gap is consistent with a belief about future interventions into the investment-grade bond market in the case of a crash.

![Spread vs Pseudo Spread](image)

**Figure 10: Spreads vs pseudo spreads.**
This figure plots actual credit spreads vs pseudo spreads from Culp et al. (2018).

5. **Additional Evidence from Other Announcements**

Here we provide select additional evidence of key policy announcements to study state-dependent policy. Our list is non-exhaustive but seeks to illustrate both the role of state-dependence and the uses of our methodology to study announcements. We are also limited to events where we have option data on relevant asset prices for the policy in question. We study equity injections in the US financial sector during 2008, an announcement of large asset purchases by the Bank of Japan in 2013, and various dates associated with the implementation and unwinding of quantitative easing (QE) in the United States from
Table 4: Summary of Additional Events

This table applies our methodology to many other announcement events. We compute the fraction of each announcement return explained by state-dependence in the left tail (additional price support below the median). The specific events, methodology, and financial instruments are provided in the subsections below.

<table>
<thead>
<tr>
<th>Event</th>
<th>Fraction Explained by Left Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Yield April 9th 2020</td>
<td>9%</td>
</tr>
<tr>
<td>Oct 13th 2008 (Paulson Plan)</td>
<td>37%</td>
</tr>
<tr>
<td>BoJ Purchase Speech</td>
<td>11%</td>
</tr>
<tr>
<td><strong>US Quantitative Easing Events:</strong></td>
<td></td>
</tr>
<tr>
<td>Nov 25th 2008</td>
<td>2%</td>
</tr>
<tr>
<td>Dec 16th</td>
<td>14%</td>
</tr>
<tr>
<td>March 19th</td>
<td>14%</td>
</tr>
<tr>
<td>June 19th, 2013 (Tantrum)</td>
<td>9%</td>
</tr>
<tr>
<td><strong>ECB Announcements:</strong></td>
<td></td>
</tr>
<tr>
<td>May 10, 2010</td>
<td>24%</td>
</tr>
<tr>
<td>Aug 7, 2011</td>
<td>26%</td>
</tr>
<tr>
<td>July 26, 2012</td>
<td>9%</td>
</tr>
<tr>
<td>Aug 2, 2012</td>
<td>39%</td>
</tr>
<tr>
<td>Sep 6, 2012</td>
<td>17%</td>
</tr>
<tr>
<td><strong>Average</strong></td>
<td><strong>18%</strong></td>
</tr>
</tbody>
</table>

2008-2013.

We summarize our results for these announcements in Table 4. The subsections below discuss each set of announcement dates.

5.1 2008 Financial Sector Bailout

Figure 11 studies the “Paulson Gift” (Veronesi and Zingales (2010)) on October 10th 2008 which announced large equity injections to the banking sector, as well as guarantees on various forms of bank debt, in an effort to “restore confidence in the financial system.” Veronesi and Zingales (2010) find large effects of this intervention on bank equity and bank debt.\(^8\) To analyze this case, we use option prices of the Financial Select Sector SPDR Fund which focuses exposure on the financial sector. Our method reaches similar conclu-

\(^8\)See also Kelly et al. (2016a) who use options markets to evaluate government guarantees on the financial sector.
sions but maps out the price support of this policy as a function of the underlying equity value. For example, we see price support of 40% if the equity of the financial sector were to fall by 50% and price support less than 10% if the equity of the financial sector increased by 50%. This provides strong evidence of a type of policy put to the financial sector. This effect was likely a goal of the policy itself – by providing strong conditional promises that the US government would do whatever it takes to keep the financial sector solvent, both debt and equity prices rose substantially. Paulson himself famously stated “if you’ve got a bazooka, and people know you’ve got it, you may not have to take it out.”

**Figure 11: “Paulson’s Gift:” Banking Sector Bailout in October 2008. Effect on prices.**

This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price, normalized to 100 before announcement.

---

### 5.2 Bank of Japan Asset Purchases, 2013

Figure 12 studies Japan on April 4th 2013 after a speech given by Haruhiko Kuroda, the head of the central bank, in which he outlined large purchases of government bonds and equities to drive up asset prices and inflation. Charoenwong et al. (2021) systematically
study equity purchases by the Bank of Japan and find that they increase equity prices. We use three-month options on the Nikkei index in a three day window around the announcement. This episode points to conditional promises that provide price support of around 10% for adverse states vs about 6% for good states. This was very much intended from the announcement by Kuroda as the speech outlined a “whatever it takes” type approach to support prices and achieve growth.

![Figure 12: Announcement of Purchases by Bank of Japan in April, 2013. Effect on prices.](image)

This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price, normalized to 100 before announcement.

### 5.3 Quantitative Easing, 2008-2013

Figure 13 looks at US quantitative easing (QE) announcements on four separate dates using three-month options on the 10 year Treasury Note futures contract. Treasuries are likely an imperfect asset to study the conditional impact of QE, because future conditional purchases may depend on many other state variables besides the price of the 10 year
Treasury, which our measurement will not capture. We focus our analysis on four QE announcements. The first is the initial announcement of large scale asset purchases (LSAPs) on November 25th, 2008. The second is the FOMC statement on December 16th, 2008. The third is the FOMC statement on March 18th, 2009. The last is the “Taper Tantrum” on June 19th, 2013. The first three policy announcements see an increase in Treasury prices (fall in yields) and the price support function is strongly downward sloping. All of these announcements are associated with increased purchases. The magnitudes are fairly similar with about 4-6% price support in cases where prices fall. The downward slope indicates a market belief for more purchases or price support should prices fall by 15% or more, roughly 3% price support at current prices, and roughly 2-3% for a 10% increase in prices. The last announcement (lower right panel) is the “Taper Tantrum” where it was announced purchases would decline. We see an overall decline in prices (sharp increase in yields) with an upward, rather than downward slope. This announcement is thus associated with not only a tapering of purchases but an associated decline in conditional price support from future purchases. Overall, the events of QE are associated with stronger action in the left tail, though the effects are more mild than other events. These results speak to a broader literature that estimates the channels through which QE operates by using event studies (e.g., Vissing-Jorgensen and Krishnamurthy (2011)). Our results suggest that part of the large price response on announcement comes from stronger interventions in the left tail.

5.4 ECB, 2010-2012

Figure 14 looks at announcements of asset purchases by the European Central Bank. We use five announcement dates found by Krishnamurthy et al. (2018) to have substantial asset price effects. Ideally, for these announcements, we would like to have options on sovereign bonds for countries in the Eurozone (or options on a sovereign bond index).
Figure 13: Quantitative Easing. Effect on prices.
This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price, normalized to 100 before announcement.

This is most directly where the asset purchase announcements were aimed. However, Krishnamurthy et al. (2018) show a very broad asset price response to the announcements. In fact, they estimate most of the increase in total value from these announcements came from the reaction of stock markets. This is likely due to different channels than what we saw for investment-grade bonds during COVID. One interpretation is for Europe there was a feared “doom loop” that sovereigns would be unable to pay creditors or roll over debt and this would lead to substantial declines in economic activity. This could be coming from higher taxation, strong fiscal adjustments, or losses born by holders of sovereign
bonds which included a large portion of the banking sector in Europe. These losses could lead to a substantial credit crunch that would result in a decline in economic activity. The fact that the asset price effects were broad also means we can use options on the Euro Stoxx index to assess conditional purchases. This assumes that any conditional purchases will be correlated with the stock index value and that the stock index will respond to purchases in those states.

Figure 14 shows strong effects of conditional policy from these announcements. Across all the five announcements, the extra support in the left tail explains about 20% of the overall reaction on average. This is likely not surprising as part of the goal of the announcements was to promise to do “whatever it takes.” While the exact quantities implied by this promise were vague, the intention to commit to promises in this case was explicit.

5.5 FOMC meetings

We next explore whether news about a policy put is present around FOMC meetings by studying the Fed put. Cieslak and Vissing-Jorgensen (2021) show that low stock returns predict accommodating policy by the Federal Reserve, supportive of the notion of the Fed put and Dahiya et al. (2019) show a decline in equity put option volatility around Fed meetings. Here, we ask whether news about the Fed put (how much the Fed is willing to use policy to boost declines in stock prices) is revealed around FOMC meetings and press releases. The announcements we studied earlier had clear directional implications: an announcement to support prices that includes a policy put, such as an asset purchase program, should both boost returns and feature asymmetric price support in the left tail if a policy put is present. Assessing whether this type of news is revealed through Fed communication more broadly is more challenging because a given statement could increase or decrease expectations of the Fed put. Our goal is to overcome this challenge
**Figure 14: ECB Announcements. Effect on prices.**

This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price, normalized to 100 before announcement.

by using the overall return response to gauge if news was good or bad, and then to Fed communication is more associated with movements in the tail of distribution compared to normal days.

49
Table 5: FOMC Meetings

This table studies promises around FOMC meetings. The dependent variable is the bottom minus top return on the S&P500 index. Standard errors computed using Newey-West with 5 lags.

<table>
<thead>
<tr>
<th></th>
<th>(Bottom – Top)\textsubscript{t}</th>
<th>(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>return\textsubscript{t}</td>
<td>44.12***</td>
<td>(1.39)</td>
</tr>
<tr>
<td>FOMC\textsubscript{t}</td>
<td>0.01</td>
<td>(0.03)</td>
</tr>
<tr>
<td>FOMC\textsubscript{t} × return\textsubscript{t}</td>
<td>-1.84</td>
<td>(3.69)</td>
</tr>
<tr>
<td>press\textsubscript{t}</td>
<td>0.10**</td>
<td>(0.05)</td>
</tr>
<tr>
<td>press\textsubscript{t} × return\textsubscript{t}</td>
<td>9.83***</td>
<td>(4.62)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.03</td>
<td>(0.01)</td>
</tr>
<tr>
<td>(N)</td>
<td>4,652</td>
<td></td>
</tr>
<tr>
<td>Adj. (R^2)</td>
<td>0.81</td>
<td></td>
</tr>
</tbody>
</table>

Specifically, for the S&P500 we construct \(E[g(p)]|p < p_{median}\) and \(E[g(p)]|p \geq p_{median}\) which we refer to as “bottom” and “top,” respectively. Recall that by construction \(E[g(p)]\) is equal to the return of the S&P500 each day. Our bottom and top measures assess the daily return coming from the left and right tails of the distributions, respectively. An increase in the Fed put (e.g., news that the Fed will put more weight on the stock market in setting policy) should lead to two things. First, the return on stocks should be high as this represents good news for the stock market. Second, the bulk of this return should be driven by the bottom of the distribution – where the Fed is providing support through the put – relative to the top. We view press announcements – regularly scheduled FOMC meetings that are followed by a press conference – as being most informative for news about Fed policy and stock prices. Cieslak and Vissing-Jorgensen (2021) conduct a textual analysis of Fed transcripts and find strong evidence of discussion about the stock market, consistent with this view.

Table 5 regresses the “bottom minus top” return on the daily stock return and includes
interactions for both regularly scheduled FOMC meetings as well as scheduled meetings that include a press announcement. Stock returns are strongly positively related to bottom minus top returns. The coefficients imply that a 1% daily rise in stock returns is associated with a 0.44% increase in the bottom minus top return. This is not surprising as news about crash risk more generally plays a role in driving returns. The interaction term of returns and FOMC press meetings shows there is a substantially stronger relation on FOMC press release days. The magnitude here means a 1% increase in returns on FOMC press release days is associated with a 10 bps increase in the bottom minus top return so the relation is 22% stronger than on normal days. We interpret this as suggestive evidence that news about left tail risk is especially informative about returns around FOMC press release days, consistent with these days revealing news that shifts market expectations of the Fed put. We also only find significant results on scheduled FOMC meetings that include a press announcement (roughly 20% of meetings), consistent with these days providing communication about the Fed put.

6. Economic Model

We introduce a simple model in the style of Vayanos and Vila (2021) and Greenwood and Vayanos (2014) to understand the economic effects of purchase announcements and to further clarify the assumptions made in our main empirical section. We adapt our model from Vayanos and Vila (2021) because it is the leading framework the literature has used to think about the direct asset pricing effects of asset purchases (e.g., Bernanke (2020)).

There are three dates, 0, 1, and 2. There is a risky asset in unit supply paying off \( X \) at date 2 where we assume \( X \) is lognormal with \( \ln(X) \sim N(\mu, \sigma^2) \). There are three agents, a specialized arbitrageur, inelastic investors, and a policymaker (e.g., a central bank). The policy maker announces asset purchases at date 0 and these purchases are made at date 1.
The specialized arbitrageur has log utility over wealth and chooses his portfolio allocation in periods 0 and 1 between the risky asset and a risk-free asset. We take the risk-free rate as exogenous and label the gross return $R_f$ and denote $r_f = \ln(R_f)$. We keep the risk-free rate the same at both dates but this is for simplicity and isn’t necessary for our conclusions. The arbitrageur is endowed with shares of the risky asset worth $W_0$ at date 0.

Inelastic investors have $W_I$ dollars of the risky asset at date 0 and are price inelastic. They can be thought of as insurance companies, pension funds, or other institutions who hold a large fraction of the bond market but do not trade frequently or are inattentive. In contrast, the arbitrageur should be thought of as a dealer bank, hedge fund, or other active trader. Inelastic investors face a stochastic demand shock at date 1 that leads them to sell $\tilde{B}$ dollars of the asset. It is convenient to define $\tilde{b} = \tilde{B}/W_1$ as the dollar sales made by the inelastic investors as a fraction of the arbitrageurs’ date 1 wealth. This fire sale shock is the only source of date 1 uncertainty. The fire sale shock depresses prices but is independent of fundamentals of the asset payoff. While the COVID episode fits primarily with this fire-sale interpretation, we could easily have a fundamental cash flow shock at date 1, i.e. a shock to date 1 cash-flow expectations, and this may indeed be a better economic interpretation of other episodes with asset purchase announcements (e.g., quantitative easing).

We solve for date 1 prices and quantities, then use these to arrive at date 0 prices.

The arbitrageur’s first order condition at date 1 can be approximated by

$$
\alpha_1 = \frac{E_1[\ln(X/P_1)] - \log(R_f)}{Var_1(\ln(X/P_1))} = \frac{\mu - p_1 - r_f}{\sigma^2}
$$

where $\alpha_1$ is the arbitrageur’s portfolio share in the risky asset, $X/P_1$ denotes the gross

---

9It is also possible to interpret this shock as coming from firms’ potentially large debt issuance needs during COVID, rather than sales by the inelastic investors.
return on the asset from date 1 to date 2, \( p_1 = \ln(P_1) \), and \( E_1[.] \) denotes the conditional expectation taken at time 1.

The central bank purchases \( q \) of the asset at date 1, where we denote \( q \) as a fraction of the arbitrageur’s date 1 wealth. We allow this amount \( q \) to potentially be stochastic, from the perspective of time 0, and correlated with the fire sale \( \tilde{b} \). For example, the central bank could purchase more in states where the fire sale shock is larger to dampen price dislocations. In a setting which fundamental

Because the arbitrageur absorbs the net supply imbalance, market clearing for the asset at date 1 implies that \( \alpha_1 - \tilde{b} + q = 1 \) so that \( \alpha_1 = 1 + \tilde{b} - q \). Combining this with the arbitrageur’s first order condition, and solving for \( p_1 \), gives

\[
p_1 = \sigma^2(1 - \tilde{b} + q) + \mu - r_f
\]  

(10)

This equation gives a multiplier \( \sigma^2 \) for the effect of asset purchases \( q \) on the (log) price \( p_1 \) (where \( q \) here is as a share of the arbitrageur wealth). For example, higher purchases \( q \) remove the asset from the arbitrageur’s balance sheet and raise prices by \( q\sigma^2 \) to compensate for bearing the additional risk, and vice versa for fire sales \( \tilde{b} \). Since \( q \) is normalized by the arbitrageur’s wealth, \( \frac{p_1}{W} \sigma^2 \) gives the multiplier in the more standard units of a fraction of market capitalization. That is, if the central bank purchased 1 percent of the total market capitalization of the asset, the price would increase by \( \frac{p_1}{W} \sigma^2 \) percent. If arbitrageur capital is a small portion of the total wealth invested in the risky asset, the multiplier will be large. This is because the purchases are absorbed by a relatively small amount of active agents, so they have a very large effect on active agents’ positions. We also note that the multiplier is constant and does not depend on the realization of the state \( b \) at date 1.

One can use the date 1 pricing equation to show that this framework naturally explains the “weakening” effect of follow on purchases. Consider the difference between \( p_1 \), the price of date 1 after the actual purchases are implemented, and \( E[p_1 | b] \), the price
of the asset right after the selling shock $b$ is realized but just before the date 1 purchases $q$ are implemented,

$$p_1 - E[p_1|b] = \sigma^2(q - E[q|b])$$  \hspace{1cm} (11)

We see that only purchases that deviate from what was expected given the announcement in date 0 will have any effect, and when the policy maker simply fulfill their promises the effect is exactly zero. Of course, here the zero effect does not mean that the date 1 intervention was ineffective, but simply that it was already reflected in the date-0 price response.\(^{10}\)

Purchases have no effect on the exogenous asset fundamentals $X$ in the model, and thus they move prices only through their affect on the asset risk premium from date 1 to 2. This also implies that date 2 pricing kernel will change with asset purchases $q$. Because the agent has log utility, the pricing kernel is given by $W_1/W_2$ or the inverse return on the arbitrageur’s wealth from date 1 to date 2. Labeling the pricing kernel as $m_2$ we have

$$m_2 = \left(\alpha_1 R_2 + (1 - \alpha_1) r_f\right)^{-1} = \left(\frac{1 + \bar{b} - q}{R_2 + (q - \bar{b}) r_f}\right)^{-1}$$  \hspace{1cm} (12)

Intuitively, the pricing kernel changes when purchases $q$ are made because this is when risk is actually removed from the arbitrageur’s balance sheet. This pricing kernel effect will be reflected in date 0 prices, even in the case where the pricing kernel from 0 to 1 remains unchanged. To see why, note that the time 0 price is the discounted time 1 price and the discounting between 0 and 1 remains unchanged. Since the time 1 price

---

\(^{10}\)While here we have one announcement date paired with one purchase date, it is immediate to extend the model to speak to the evidence more explicitly by having two announcement dates paired with two purchase dates. All that our framework requires is that the first announcement reveals the policy rule the policy maker will adopt in the follow on announcement. In this way the effect of the first announcement is driven not only by the immediate follow on purchases but also by the follow on announcements which themselves will appear to be ineffective.
has risen, the time 0 price will also rise. This make it transparent how asset purchases can impact prices by moving future risk-premium even if they do not impact the pricing kernel between the announcement date and the asset purchase date as we assume in our baseline analysis.

At date 0, the arbitrageur’s first order conditions for the risky and risk-free asset, respectively, give $E_0 \left[ \frac{w_0}{w_1} w_1 p_1 \right] = 1$ and $E_0 \left[ \frac{w_0}{w_1} r_f \right] = 1$. At date 0 the arbitrageur invests fully in the risky asset. That is $a_0 = 1$. This requires that the initial endowment of the arbitrageur is given only in the risky asset. Since the inelastic agents do not buy or sell at date 0, the arbitrageur must hold on to their shares in equilibrium. This implies $W_1 / W_0 = R_1 \equiv P_1 / P_0$ where $R_1$ is the risky asset return. This trivially means that $E_0 \left[ \frac{w_0}{w_1} p_1 \right] = 1$. Using $E_0 \left[ \frac{w_0}{w_1} r_f \right] = 1$, we have

$$p_0 = \frac{1}{R_f E_0 \left[ \frac{1}{P_1} \right]} \quad (13)$$

It follows from the expression above that a date 0 announcement by the central bank to purchase a constant share of the asset at date 1 does not change the pricing kernel between dates 0 and 1. Because the intervention pushes up prices proportionally both at date 0 and date 1 it does not change asset risk between these dates. This means that in such a model our framework recovers the correct price support function.\(^{11}\)

Deterministic purchases do not affect risk premiums at date 0 for two reasons. The first is that purchases, whether deterministic or state-dependent, do not remove risk from the arbitrageur balance sheet until date 1. Thus, risk removal only impact the pricing kernel from date 1 forward. The second is that deterministic purchases do not change

\(^{11}\)Note that $g(p_1) = (F_{p_1}^{-1}(F_{p_1}(p_1)) - 1)$, where $F$ and $F'$ are the risk-neutral distributions of prices in date 1 before and after the announcement. Given the kernel implied by the specialist model we have $F_{p_1}(y) = F^p(y) \frac{1}{R_{1/y} E_0[y]}$ and $F'_{p_1}(y) = F'^p(y) \frac{1}{R_{1/y} E_0[y]}$, where subscript $P$ stands for the natural probability distribution. Plugging an intervention that buys a constant share of the asset market capitalization $p_1' = (g_a + 1) \times p_1$ to the equation above recovers $g(p_1) = g_a$. 

55
the risk of the asset because it moves prices uniformly up. Because the arbitrageur prices the risky asset, the pricing kernel is, roughly speaking, \((arb \ asset \ exposure) \times (asset \ risk)\). That is, stochastic purchases might impact the date 0 to 1 pricing kernel only through the effect they have on the risk of the asset between dates 0 and 1.

Plugging in the date 1 price of the asset gives the date 0 price as

\[
p_0 = \mu + \sigma^2 - \ln \left( E_0 \left[ \exp \left( \sigma^2 (\tilde{b} - q) \right) \right] \right)
\]

(14)

It is immediate from this expression that the date 0 price reflects the announcement of purchases made at date 1.

In summary, we have provided a model in the style of Vayanos and Vila (2021) where: (1) prices may be initially “dislocated” or depressed because of fears of future fire sales rather than cash flows (though the source of depressed prices is effectively irrelevant), (2) purchases affect asset prices through their affect on future risk premiums, (3) announcements of purchases affect prices even if purchases happen later, (4) constant purchases of assets require no additional risk adjustment between announcement and purchases, and (5) state-dependent purchases (state-dependent \(q\)) can alter the pricing of risk between announcement and purchases through their affect on the risk of the asset. In the last case one needs to adjust our methodology to account for changes in the risk of the asset, but no other effects.

7. Revisiting Announcement Patterns and the Effect of Purchases

The evaluation of asset purchases typically focuses on announcement effects through an event study approach (Gagnon et al., 2018; Vissing-Jorgensen and Krishnamurthy, 2011;
That is, researchers use an announcement of purchases as the event and study the response of prices of the assets being purchased (or close substitutes). Our framework highlights that investors do not only respond to the headline number made at announcement, but form a perception of how the entire state contingent policy plan change as a function of the announcement. Based on this logic, early announcements, which convey not only immediate purchases but the potential for larger purchases in bad states of the world, should move prices much more than later ones (all else equal). These announcements contain a policy put option that has substantial value, as the evidence in Section 5 suggests. Accordingly, later announcements that are in line with bond investors’ view of the state-contingent policy plan will have zero effect. They will only matter to the extent they are a surprise relative to the policy plan investors perceive. This explains why even a large announcement can appear to have zero effect. If the Fed has resorted to large asset purchases in past crises, then upon entering a crisis bond investors will not be surprised by such an announcement.

This view leads naturally to the findings of Hesse et al. (2018), Meaning and Zhu (2011), and Bernanke (2020) that announcements of asset purchases have a “weakening effect,” but a key feature of the view proposed here is that the weak effects observed in follow on interventions are a direct result of the very large effect for the original interventions, i.e. using their headline announcement only to measure the effect of the policy will lead to multipliers that are too large.\footnote{This may also help reconcile the findings of Fabo et al. (2021) that the effects of QE vary significantly in the literature.}

Going beyond the raw effect on yields, we show that the multiplier or price impact shows both stronger evidence of weakening and consistency across countries or economic regions. We also discuss evidence from Treasury purchases during COVID in the US, where large quantities of purchases were announced but prices barely responded. This episode is useful because the announcement was made during a time of large economic
distress and uncertainty. This cuts against the view that weakening announcement effects might stem from time variation in effectiveness based on when purchases are made rather than the view of purchases as a state-contingent policy plan – which views the low multipliers as a result of investors understanding that the Fed would buy assets in these states.

Finally, our framework explains not only why later announcements appear to have little effect, but also why early announcements appear to have effects much larger than other estimates in the literature that study bond supply and bond yields. For example, Greenwood and Vayanos (2014) estimate the supply effect on bond yields in the time-series and state: “our estimate that a unit decrease in maturity-weighted debt to GDP lowers the long-term yield by 40 bps is somewhat smaller than the QE estimates.”

\[^{13}\] They estimate QE effects from the initial QE1 program of above 100bps for the same change in supply. In our framework the early QE announcements will provide larger estimates if they also contain the value of the put option. Using these numbers, our framework would suggest the value of future state contingent policy is more than half of the initial announcement effects.

### 7.1 Bank of England Summary

Table 6 contains the response of 10 year Gilt yields to six announcements of purchases between February 2009 and February 2010. The Bank of England is unique in that most of these announcements contained a fairly narrow and specific quantity range. First, note that only the first two announcements had any effect at all on yields, together resulting in about a 100bps decline in the 10 year Gilt yield. The first announcement, on February 10th, 2009, did not contain concrete information but suggested that purchases were likely. On March 4th, purchases of £75 billion lead to a decline of 70bps in the 10 year Gilt yield.

\[^{13}\]See also Krishnamurthy and Vissing-Jorgensen (2012).
Table 6: UK Announcement Effects

This table shows data for UK. The yield numbers are for the 10 year Gilt. Sources: Joyce and Tong (2012), Meaning and Zhu (2011), and author’s calculations. Quantities are given in billions (£). The column “multiplier” indicates the percentage change in market value of the securities divided by the percentage of market capitalization purchased.

<table>
<thead>
<tr>
<th>Date</th>
<th>Gilt Yield</th>
<th>Announcement</th>
<th>Quantity Low</th>
<th>Quantity High</th>
<th>Multiplier Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/10/09</td>
<td>-34</td>
<td>QE “likely”</td>
<td>75</td>
<td>75</td>
<td>0.60</td>
</tr>
<tr>
<td>3/4/09</td>
<td>-68</td>
<td>75 billion</td>
<td>50</td>
<td>125</td>
<td>[-0.13, -0.05]</td>
</tr>
<tr>
<td>5/6/09</td>
<td>10</td>
<td>50-125 billion</td>
<td>50</td>
<td>125</td>
<td>[0.02, 0.04]</td>
</tr>
<tr>
<td>8/5/09</td>
<td>-3</td>
<td>50-125 billion</td>
<td>25</td>
<td>25</td>
<td>-0.27</td>
</tr>
<tr>
<td>11/4/09</td>
<td>10</td>
<td>25 billion</td>
<td>200</td>
<td>350</td>
<td>[0.17, 0.29]</td>
</tr>
<tr>
<td>2/3/10</td>
<td>-2</td>
<td>Maintain 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-87</td>
<td></td>
<td>200</td>
<td>350</td>
<td></td>
</tr>
</tbody>
</table>

In contrast, the next three announcements featured no changes in yields at all despite similar magnitudes of purchases. We can convert the yield changes and quantities into a price elasticity that gives the price impact, which we provide in the column “multiplier.” The multiplier for the first announcement of 0.6 says that by purchasing 10% of the supply of Gilts the price of Gilts would fall by 6% (for a security with a duration of 10, this means a decline in yields of 60bps). When the announcement comes with a quantity range, we provide the range for the multiplier as well. The main finding is that the multiplier is much higher in the early announcement and is then essentially non-existent afterwards.

These patterns fit well with our view of state-contingent policy. A natural interpretation is that upon hearing the early announcements, agents perceived that more purchases would occur if the economy remained weak. This explains reasonably high initial multipliers and zero beyond this. The Bank of England implemented a second period of purchase announcements in October 2011, but Meaning and Zhu (2011) find these to have a negligible effect on yields. Unlike for other countries, we don’t have reliable option data for Gilts over this period to evaluate whether the state-contingent view of purchases was evident in the early announcements.

An alternative explanation for the declining multiplier effect above is that the multi-
plier depends on economic conditions, and the initial announcements occurred in periods when the economy was in worse shape (after all that is when they decided to pursue this policy for the first time). We will return to this argument in each of the subsections. For the UK data, we note that the multiplier goes from 0.6 in March, 2009 to -0.1 in May, 2009. Thus economic conditions would have to change quite rapidly for the multiplier to go from high and positive to zero in only two months.

7.2 United States

Table 7 provides announcement effects for Quantitative Easing (QE) in the US, specifically QE1 which was implemented November, 2008 to November, 2009. Later QE programs, QE2 and QE3, have been shown to have had essentially no effect on yields. The Fed purchased Treasuries, Agency debt, and Mortgage-backed-securities, and we use numbers from Gagnon et al. (2018) on the yield responses. The last column “multiplier” converts average yield changes to price movements and then divides by the total amount of assets purchased as a fraction of the supply of these securities outstanding.\footnote{We find similar results using a weighted average of the yield responses where weights are given by the relative supply of each.} The initial announcement, which stated the Fed would purchase “up to” $600 billion across these categories, led to an average decline in yields of about 40 bps. This equates to a multiplier of about 0.8 (e.g., for a purchase sized at 1% of market cap, prices would increase by 0.8%). The next significant announcement in QE1 came in March 2009, where the Fed expanded quantities. While yields moved by about the same amount, the quantities were larger. This lead to a lower multiplier. Later announcements, for example dropping the “up to” language and effectively confirming the Fed would purchase the maximum stated amount, had no effect on yields. These patterns also fit the option pricing results in 5 for the initial announcements which indicate implied policy puts from the early announcements.
These results contrast to QE2 and QE3, where no announcement effects are found (see Meaning and Zhu (2011)). A potential concern with comparing these impacts across time periods is that perhaps the multiplier is much higher in times of more severe economic stress. The interventions in the treasury market during the COVID shock when the quantity and pace of purchases were significantly larger cuts across economic conditions being the key driver of variation in multipliers. These announcements are studied extensively in Vissing-Jorgensen (2021), who find that the announcements had no effect on Treasury yields using high frequency data from Treasury futures markets. The first announcement on March 15th stated purchases of “at least” $500 billion of Treasuries and $700 billion in total long duration assets. This is sizable not only on its own but also because the “at least” language indicated potentially much larger purchases. This was confirmed on March 23rd when the purchase amounts shifted to “unlimited” and the Fed continued to purchase large quantities. These announcements quickly translated into actual purchases – within three weeks of the initial March 15th announcement the Fed had purchased over $1 trillion in Treasuries. Still, the announcements had no effect on yields as shown in Vissing-Jorgensen (2021).

Vissing-Jorgensen (2021) argues that the purchases themselves, rather than the announcements, had an impact in March 2020, possibly because of large frictions and selling pressure in Treasury markets at the time. However, even this effect is modest. Vissing-Jorgensen (2021) states “that an increase of 0.1 (buying 10% of supply) leads to a 5.35 bps larger decline in yields.” Using a duration of ten would then imply a 50 bps price increase, or a multiplier of about 0.05. Thus, regardless of whether one uses announcements or actual purchases, the COVID period features a very low multiplier relative to QE1. The natural interpretation is that the bond market expected large purchases of Treasuries given the prior experience of QE. Under this view, it is not that purchases were not effective, just that the market already expected them to occur so the announcement is not informative about effectiveness.
Table 7: US Announcement Effects

This table shows data for US. Sources: Gagnon et al. (2018), Vissing-Jorgensen (2021), and author’s calculations. Quantities are given in billions (USD). The column “multiplier” indicates the percentage change in market value of the securities divided by the percentage of market capitalization purchased.

<table>
<thead>
<tr>
<th>Date</th>
<th>Yield Responses</th>
<th>Quantities</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treas Agy MBS Avg</td>
<td>Treas Agy MBS Total</td>
<td></td>
</tr>
<tr>
<td>11/25/08</td>
<td>-22 -58 -44 -41.33</td>
<td>Up to 0 100 500 600</td>
<td>0.80</td>
</tr>
<tr>
<td>12/16/08</td>
<td>-26 -29 -37 -30.67</td>
<td>Expanding</td>
<td></td>
</tr>
<tr>
<td>1/28/09</td>
<td>14 14 11 13.00</td>
<td>Expanding</td>
<td></td>
</tr>
<tr>
<td>3/18/09</td>
<td>-47 -52 -31 -43.33</td>
<td>Up to 300 200 1250 1750</td>
<td>0.29</td>
</tr>
<tr>
<td>4/29/09</td>
<td>10 -1 6 5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/2/09</td>
<td>6 3 2 3.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/12/09</td>
<td>5 4 2 3.67</td>
<td>Drop “up to”</td>
<td></td>
</tr>
<tr>
<td>9/23/09</td>
<td>-3 -3 -1 -2.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/4/09</td>
<td>6 8 1 5.00</td>
<td>175 175 -0.33</td>
<td></td>
</tr>
<tr>
<td>Total QE1</td>
<td>-76 -153 -106 -111.67</td>
<td>300 475 1750 2525</td>
<td>0.51</td>
</tr>
<tr>
<td>3/15/20</td>
<td>-17 -17.00</td>
<td>At least 500 200 700</td>
<td>0.07</td>
</tr>
<tr>
<td>3/23/20</td>
<td>0 0.00</td>
<td>Unlimited 500 500 0.00</td>
<td></td>
</tr>
</tbody>
</table>

The results for Treasuries during COVID also contrast sharply with what we document for corporate bonds. The key difference is that the Fed had never before purchased corporate bonds and thus the announcement was a surprise. Further, once the corporate bond announcement was made, the market understood the implications for future state-contingent purchases more immediately compared to quantitative easing in 2008 where learning appeared to occur over a few announcements.

This experience also contrasts with the Bank of Canada (Arora et al., 2021) during the same time period. The Bank of Canada announced purchases of government bonds on March 27th, 2020. Government bond yields declined immediately on the announcement as shown in Arora et al. (2021). Importantly, this was the first time the Bank of Canada implemented a large-scale asset purchase program involving government securities, contrasting with the US experience where such purchases were made in the global financial crisis.

In summary, the evidence from asset purchases in the United States is quite clear:
earlier announcements of a particular policy appear to have the largest impact on prices. This is apparent even in the early stages of quantitative easing (“QE1”). Beyond QE1, announcement effects have effectively disappeared for Treasuries, Agency debt, and MBS. This does not seem to be due to variation in the economic conditions around the announcements.

### 7.3 ECB Summary

Table 8 gives results for the European Central Bank announcements in 2010-2011 during the European sovereign debt crisis. We use yield data from Krishnamurthy et al. (2018) (see their Table 3). It is difficult to immediately compare yield changes and tie them to quantities as specific quantities are only given for the first two announcements. The first announcement in May of 2010 had the largest effect on sovereign yields, with an average decline in yields of 190 bps. Given the quantity announced of €75 billion, this large decline in yields suggests a multiplier of around 3.5, where we construct this number using the total debt of the five countries considered and the average duration of the bonds purchased from Krishnamurthy et al. (2018). The next announcement in August saw a much smaller, though still substantial, decline in yields of about 70 bps. This translates to a significantly smaller multiplier.

Next, we note that there were three separate programs for the ECB sovereign crisis. The Securities Markets Programme (SMP), the Outright Monetary Transactions (OMT), and the Long-Term Refinancing Operations (LTROs). Each program was different. The SMP was the only one that involved direct purchases. As discussed, the first SMP announcement carried much larger effects than the second, consistent with investors learning about future conditional announcements from the initial announcement. The OMT featured conditional commitments to purchase government debt. Again, the strongest response comes from the initial OMT announcement consistent with the state-contingent
This table shows data for ECB. Sources: Krishnamurthy et al. (2018) and author’s calculations. Quantities are given in billions (Euros). We use average yield responses across maturities for each sovereign in Krishnamurthy et al. (2018) and the 10 year yield if the average is not available. The column “multiplier” indicates the percentage change in market value of the securities divided by the percentage of market capitalization purchased.

<table>
<thead>
<tr>
<th>Type</th>
<th>Date</th>
<th>Italy</th>
<th>Spain</th>
<th>Portugal</th>
<th>Ireland</th>
<th>Greece</th>
<th>Avg</th>
<th>Quantity</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP1</td>
<td>5/10/10</td>
<td>-47</td>
<td>-62</td>
<td>-219</td>
<td>-127</td>
<td>-500</td>
<td>-191</td>
<td>75</td>
<td>3.49</td>
</tr>
<tr>
<td>SMP2</td>
<td>8/7/11</td>
<td>-84</td>
<td>-92</td>
<td>-120</td>
<td>-49</td>
<td>-3</td>
<td>-69.6</td>
<td>145</td>
<td>0.99</td>
</tr>
<tr>
<td>OMT1</td>
<td>7/26/12</td>
<td>-72</td>
<td>-89</td>
<td>-12</td>
<td>-78</td>
<td>-62.75</td>
<td>unspecified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMT2</td>
<td>8/2/12</td>
<td>-23</td>
<td>-41</td>
<td>-8</td>
<td>-67</td>
<td>-34.75</td>
<td>unspecified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMT3</td>
<td>9/6/12</td>
<td>-31</td>
<td>-54</td>
<td>-98</td>
<td>-36</td>
<td>-54.75</td>
<td>unspecified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTRO</td>
<td>12/1/11</td>
<td>-46</td>
<td>-61</td>
<td>-27</td>
<td>-147</td>
<td>-70.25</td>
<td>lend to banks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTRO</td>
<td>12/8/11</td>
<td>35</td>
<td>30</td>
<td>9</td>
<td>90</td>
<td>41</td>
<td>lend to banks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

view. No purchases were made during the OMT program. Finally, the LTRO extended loans to banks. The LTRO announcements feature the same declining pattern.

In sum, the ECB announcements that involved direct purchases of sovereign debt (SMP) feature declining multipliers. Other programs aimed at reducing sovereign yields had declining effectiveness after the initial announcement was made.

A consistent explanation is that agents updated after the initial announcement of each program that this policy tool would likely be used again or more aggressively if the situation worsened or did not improve. This leads to the largest effect on the first announcement, and large multipliers in the case of announced purchases.

### 8. Conclusion

We provide a framework and methodology to evaluate the state-contingent impact of policy, which we apply to several policy announcements. We find a large role for state-contingent policy that indicates more intervention if conditions worsen. In our main empirical setting, the announcement of corporate bond purchases during the COVID-19 cri-
sis, we find evidence markets expected five times more price support in crash scenarios relative to the median state and significantly more relative to good states. This policy put option to significantly expand the size of the intervention in bad states explains a large share of the market response to the announcement. Our methodology focuses on shorter horizons as this is the maturity that relevant options expire. We also find longer-run effects of state-contingent interventions in corporate bond markets after announcements of corporate bond purchases, consistent with expectations of future intervention if a future crash should occur. We extend our analysis to several other policy announcements as well and find support for conditional intervention. The state-contingent policy view helps explain many empirical phenomena including large multipliers from initial policy announcements and weakening or disappearing announcement effects for later announcements of the same policy.
References


D’Amico, Stefania, Vamsidhar Kurakula, and Stephen Lee, 2020, Impacts of the fed corporate credit facilities through the lenses of etfs and cdx, Available at SSRN 3604744.


Kargar, Mahyar, Benjamin Lester, David Lindsay, Shuo Liu, Pierre-Olivier Weill, and Diego Zúñiga, 2020, Corporate bond liquidity during the covid-19 crisis, Working paper, working paper.


9. Appendix

9.1 SDF Effects

Figure 15 shows the price support in the presence of endogenous pricing kernel effects following Proposition 3.

![Graph showing the price support in the presence of endogenous pricing kernel effects.]

**Figure 15: Risk-adjusted Price Support.**
This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price, normalized to 100 before announcement.

9.2 Longer Event Window

We next show robustness to using a longer window in our event study. Our main results use one day which tightens identification. However, it could also be reasonable to allow more time for markets to react at the cost of tighter identification since a longer period means that other shocks could be affecting markets. The lower left panel of Figure 16 shows our results are similar if we expand our announcement effects to a three-day window. While magnitudes are slightly larger compared to the results in the one-day window (reproduced in the upper left panel), the asymmetric effect is similar. In our earlier analysis, we attributed about 53% of the announcement effect to additional promises in the
left tail. Using a three-day window this number falls to about 40% because the right tail remains elevated. However, the dollar value from additional left tail promises increases from about $250-300 billion using the one-day window to about $400 billion when we expand to the three-day window. This comes from the overall return on corporate bonds being larger over three days compared to one day. This shows our choice of event-window size doesn’t have a large effect on these results.

Over a three-day window, there is some evidence of asymmetry in high-yield (lower right panel). However, comparing the investment grade, the magnitudes are about half as large. This is the opposite of what we would expect from a price of risk view, based on the fact that high yield has a much higher beta compared to investment grade. That is, a lowering of the price of risk will boost the value of the riskiest claims (high-yield) compared to safer claims (investment-grade). These results also help control for information effects that might be revealed from the Fed announcement about the macroeconomy (Nakamura and Steinsson, 2018).

**Figure 16: Investment Grade vs High Yield.**
This figure shows the implied price support (expressed in percentage as a return) as a function of the pre-policy price, normalized to 100 before announcement.