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Abstract

Pricing in a complex environment is difficult for individual sellers. Whereas the platform tries
to aid seller pricing, its different objectives might steer seller behavior towards the platform’s
goal. This paper empirically studies pricing frictions on Airbnb and explores the equilibrium
consequence of different platform designs. I first show that pricing frictions are prevalent.
Then, leveraging natural variation in the platform’s interface design, I demonstrate that sell-
ers’ price-setting costs and cognitive constraints are plausible drivers of the frictions. I then
estimate a structural equilibrium model and find that pricing frictions lead to a 14% consumer
welfare loss and a 0–15% seller-profit loss. Finally, I ask: How to ameliorate these frictions?
The platform’s revenue-maximizing algorithm does not lead to market-clearing prices because
it fails to internalize sellers’ high opportunity costs of time. However, a simple platform design,
where the platform sets price variation but gives sellers the final decision right to determine
the price levels, will eliminate almost all frictions.
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1 Introduction

“[F]or many hosts, finding the right price for their space can be both time-consuming

and challenging... Even many experienced hosts told us that they find pricing difficult,

especially as seasons change, special events come to town, and more listings emerge

in their neighborhood.”

– Janna Bray, Head of Research for Airbnb.1

There is rising attention to online platforms’ adoption of new pricing technologies and how these

technologies might steer the behavior of market participants. An important rationale for adopting

pricing technologies is that sellers face significant frictions in setting prices—in that their prices

fail to react to differences or changes in market conditions. Pricing frictions might be particularly

pronounced for amateur sellers, who lack the managerial capabilities compared to professionals

(Goldfarb and Xiao, 2011; Li et al., 2016). Further, whereas the platform has an incentive to assist

seller-pricing, its objective does not necessarily align with sellers’. As a result of the misaligned

incentives, platform-provided pricing technologies (pricing interfaces and algorithms) might dis-

tort prices away from sellers’ (or consumers’) desired outcomes and towards that of the platform.

What is the equilibrium consequence of sellers’ pricing frictions under the platform’s design of

pricing interfaces and algorithms? Can alternative market designs improve market outcomes?

In this paper, I study heterogeneous Airbnb sellers’ pricing decisions under the existing market

environment created by the platform, and I explore alternative market designs using counterfactual

experiments. Airbnb sellers face a difficult pricing problem similar to airline or hotel pricing. On

the one hand, each product (a night of stay) is capacity-constrained and perishable, which requires

dynamic pricing. On the other hand, different nights face drastically different demand (e.g., tourist-

season nights sell out quickly), which calls for flexible prices that respond to market conditions.

This paper uses detailed data to document the extent of seller-pricing frictions, and exploits natural

1Source: https://airbnb.design/smart-pricing-how-we-used-host-feedback-to-build-personalized-tools/. Extracted
in April 2021.
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variation in the pricing-interface design to separate different mechanisms of the frictions. Then,

estimating a tailored structural model, I quantify the consumer, seller, and platform loss due to

these frictions. Lastly, I demonstrate that a simple market design, which balances the platform’s

and sellers’ information sets and incentives, would improve the payoff of all parties.

I begin by presenting the distribution of pricing frictions and the extent to which these pat-

terns reflect the platform’s interface and algorithm design. The platform provides a feature-limited

pricing interface and a revenue-maximizing pricing algorithm (Ye et al., 2018), and the latter is

not well received among sellers. Consistent with these anecdotes, observed prices fall into two

extremes: Most sellers use inflexible pricing strategies (consistent with the pricing interface), and

a small set of sellers use highly flexible, algorithm-like prices.

Next, I investigate two plausible explanations for these pricing frictions. One explanation is

that the platform’s limited-feature interface creates the frictions, which I refer to as (interface-

induced) price-adjustment costs. A different explanation is that cognitively-constrained sellers

find the pricing problem inherently difficult, and as a result, they opt for simpler, heuristic prices.

I exploit the platform’s pricing-interface change to separate the two explanations. In 2019, Airbnb

introduced “last-minute discounts” that allow sellers to set one automated price adjustment for

each night. I find that some sellers respond to this feature by setting a sharp last-minute discount.

Yet, most sellers do not adopt dynamic pricing, despite it being automated—consistent with the

hypothesis that sellers face cognitive constraints and dynamic pricing is “too difficult” for them.

This finding suggests that price-adjustment costs is a mechanism, but not the only mechanism,

behind the pricing frictions.

To quantify pricing frictions and examine how these frictions impact equilibrium outcomes,

I construct and estimate a structural model that characterizes consumer arrival and demand, and

sellers’ pricing and participation decisions. The demand model builds on the existing literature on

capacity-constrained products (notably Pan, 2019) but extends this literature on two novel aspects.

The first extension is to account for a large set of differentiated products, with arbitrary time-

varying demand that involve a large set of fixed effects. I adopt a likelihood-based fixed-point
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algorithm (in the spirit of Chintagunta and Dubé, 2005), which makes computation scalable on

large datasets. The second extension is to propose a new “uniform-pricing instrument” to address

price endogeneity. The idea is that adjusting multiple nights’ prices together is less costly than

doing so night-by-night. The costly price adjustment makes it so that prices of far-apart nights

(with uncorrelated demand shocks) co-move with each other.

Estimating the demand model on the San Francisco Airbnb market, I find rich heterogeneity

on consumer arrival rates and price sensitivities. For example, the segmentation structure implies

that consumers who arrive early are more price-sensitive compared to those who arrive later. Na-

tional holidays see more early-arrival consumers, whereas March, the peak tourist season for San

Francisco, sees a surge of last-minute bookings. Optimal pricing in this market should factor in the

heterogeneity in consumer traffic across nights and over time. Besides, the average price elasticity

aligns well with field experimental evidence presented by Jeziorski and Michelidaki (2019).

I then construct and estimate a supply-side model, which nests the two types of pricing fric-

tions. Each seller can be of two types: The first type solves for optimal finite-horizon dynamic

prices while facing price-adjustment costs (a la Calvo, 1983). The second type is cognitively con-

strained, sets non-dynamic prices (i.e., maximizing expected profit by setting prices that do not vary

with time-to-check-in), and faces additional price-setting costs. This model exploits how different

sellers respond to the interface change to separate the importance of cognitive constraints from

price-adjustment costs. Finally, to characterize seller heterogeneity as flexibly as possible, I sep-

arately estimate, by granularly defined market segments, sellers’ marginal costs, price-adjustment

costs, and degrees of cognitive constraints (using a method proposed by Bonhomme et al., 2019).

Supply-side estimates reveal rich heterogeneity in sellers’ pricing frictions and their underlying

drivers. First, only about 15% of listings set frictionless prices—they price-in demand shifters for

different nights and are able to update prices (for a given night) as time changes and new market

information is revealed. Given the platform’s price-setting interface, manually setting such flexible

prices is unlikely to be feasible. As such, one can interpret these listings’ prices as being controlled

by some algorithm. Second, about 35% of listings can set dynamic prices but find it too costly to
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adjust them often (until the 2019 interface change makes discounting the price easier). Finally,

about half the sellers are cognitively constrained and do not set dynamic prices. Many of these

sellers also face high price-setting costs that result in inflexible prices across nights. As a result,

prices of these listings often do not account for night-specific demand shocks or market conditions.

Also, many listings bear considerable marginal costs. These costs likely reflect the sellers’

opportunity cost of time to host guests per night. The median marginal cost is $37 per night, and

a quarter of listings have a cost above $64. These costs are nontrivial relative to the median price

at $150 (and the 75 percentile at $235). Because the platform’s payoff depends on a fixed share

of sellers’ total booking revenue, it likely wants seller-revenue-maximizing prices (throughout the

paper, I will assume that the platform will not help sellers collude). In contrast, sellers’ profit-

maximzing prices are higher, so as to internalize their opportunity costs of time. The incentive

incompatibility implies that platform-controlled prices might not be at the seller-optimal level.

How important are the pricing frictions? I compare the observed market outcome with the

counterfactual where all frictions are absent (which I refer to as the “first best”). I find that con-

sumers and some sellers would have gained significant surplus compared to the baseline. Con-

sumer surplus would have been 14% higher without all frictions, and a quarter of sellers would

have gained at least 6% profit. In contrast, the platform has limited incentives to ameliorate the

pricing frictions because it (and some sellers) gains relatively little from doing so.

Given the sizable potential gains from ameliorating these frictions, I then ask: What realistic

remedies can the platform provide to improve market outcomes? I consider three different ap-

proaches. The first is the platform’s revenue-maximizing pricing algorithm, “Smart Pricing” (Ye

et al., 2018). I simulate the market outcome if the platform enforces a seller-revenue-maximizing

algorithm and fully controls pricing (but ruling out collusion). Prices are unsurprisingly lower

because the algorithm does not internalize seller costs. Consequently, whereas consumers and the

platform gain from lower prices, most sellers lose and prefer setting prices themselves (consistent

with sellers’ resistance to Smart Pricing).

The second approach is to improve the platform’s price-setting interface. I simulate an “ideal”
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interface where the platform can eliminate all seller price-adjustment costs (but cannot change

sellers’ cognitive constraints). Although this scenario is overly optimistic and assumes that the

platform can directly change some seller frictions, I find that consumer, seller, and platform payoffs

are only modestly improved. This is because significant part of the friction is due to sellers’

cognitive constraints. As such, complicating the pricing interface is unlikely a fruitful direction.

The third and final approach is to redesign the platform’s pricing to (1) let the platform deter-

mine how prices vary, but (2) let the seller determine what the base price should be. This market

design leverages the platform’s informational (data to estimate demand) and technological (algo-

rithms to automate pricing) advantages over individual sellers. Nevertheless, this design limits the

platform’s misaligned incentive by giving sellers the ability to set their own price levels. With

this market design, sellers now make simpler pricing decisions by only setting one price, and the

platform bears the main burden of deciding how prices should vary across markets and over time.

Nevertheless, I demonstrate that prices are close to the first best, and so are consumer, seller, and

platform surplus. Ameliorating the pricing frictions is feasible in practice.

Related literature. The paper’s primary contribution is to the recent stream of literature on

pricing frictions. Cho and Rust (2010), Pan (2019), Leisten (2020), and Hortaçsu et al. (2021)

document the lack of price variation in capacity-constrained industries (rental cars, Airbnb, and

airline), and attribute the frictions to managerial mistakes (Cho and Rust), menu costs (Pan), and

organizational frictions (Leisten and Hortaçsu et al.). DellaVigna and Gentzkow (2019), Hitsch

et al. (2019), Arcidiacono et al. (2020), Strulov-Shlain (2019), and Huang et al. (2020) document

grocery prices’ (lack of) response to demand features. Bloom and Van Reenen (2010), Bloom

et al. (2019), Goldfarb and Xiao (2011), and Hortaçsu et al. (2019) study firm heterogeneity and

show that firm size and manager’s education play a role in the firm’s decision quality. This pa-

per contributes to this literature by separating different mechanisms driving the pricing frictions

and by exploring alternative platform designs where such mechanisms (as well as the platform’s

and sellers’ incentives) play an important role. Closely related to this paper, Pan (2019) presents
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evidence of sticky Airbnb prices and estimates listings’ implied price-adjustment costs. This pa-

per builts on Pan (2019) and further estimates sellers’ cognitive constraints and opportunity costs

of time (marginal costs), both of which impact platform design in fundamental ways. Also, in a

contemporaneous paper, Filippas et al. (2021) present experimental evidence from a decentralized

car-rental platform’s transition from seller pricing to centralized pricing. They show that enforc-

ing centralized pricing will decrease prices, increase revenue, and lead to a high seller exit (or

non-participation) rate. This paper does not observe such a regime shift, but instead, seeks to

understand market participants’ objectives and constraints, and use this understanding to explore

different platform designs. One such counterfactual is to move all sellers to centralized pricing,

where my results are well in line with Filippas et al..

This paper’s secondary contribution is to extend the previous literature and present a framework

to study capacity-constrained markets with pricing frictions. On the demand side, the framework

follows Williams (2021) and Pan (2019) but includes a fixed-point algorithm (in the nature of Berry

et al., 1995) to accommodate a large set of fixed effects. The combination of likelihood-based esti-

mation with a nested-fixed-point algorithm goes back to Goolsbee and Petrin (2004); Chintagunta

and Dubé (2005) and is recently applied in Tuchman (2019). The demand estimation also uses

a new “uniform pricing” instrument. Both the algorithm and instrument has wider applicability

to other markets. On the supply side, the model extends Pan (2019) (who characterizes revenue-

maximizing pricing with menu costs) to capture a mixture of rational and cognitively-constrained

seller decisions. To my knowledge, the marketing and industrial organization literature has a lim-

ited set of tools to systematically characterize firms’ heterogeneous, bounded-rational behavior.

Although the specific model is tailored to the empirical setting, the idea of characterizing the seller

mixture (but going beyond cognitive hierarchy (Goldfarb and Xiao, 2011; Hortaçsu et al., 2019),

which solely focuses on firm beliefs about opponents’ strategies) might be generalizable.

Finally, the paper is broadly related to the recent discussions on algorithmic pricing, with a

particular focus on pricing algorithms as a technology (related to Brown and MacKay, 2019).2

2This paper is also broadly related to Dubé and Misra (2017) and Jin and Sun (2019), who show that a targeted-
pricing model and provision of market information can help sellers (although Jin and Sun, 2019 also show that seller
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The paper is also broadly related to the vast literature on Airbnb and sharing platforms.3,4

The remainder of the paper is organized as follows. Section 2 discusses the background and

introduces the data. Section 3 presents the main evidence on pricing behavior and heterogene-

ity. Section 4 presents the structural model (with some model details discussed in Appendix D).

Section 5 discusses estimation results. Section 6 discusses counterfactual simulation results and

implications. Section 7 concludes the paper.

2 Background and data

General context. Airbnb is the dominant platform for the short-term rental market (“short-term”

refers to the lease term shorter than 30 days). Sellers (“hosts”) register their listings on the plat-

form, upload pictures, enter descriptions, and set prices. Consumers (“guests”) arrive through the

platform’s front page and search by the destination city and check-in/check-out dates.

I assume that booking is instant and cancellation is negligible. Most listings either support

instant booking or respond quickly to requests.5 Airbnb does not have a free cancellation policy

during the sample period I study, and many listings have steep penalty for cancellations.6

pricing does not react to information). In addition, the pricing patterns across sellers (with some algorithm-like behav-
ior) is related to Chen et al. (2016), who study Amazon sellers’ algorithm-like pricing behavior.

3On pricing, Pavlov and Berman (2019) present a theoretical model to highlight the tradeoff between platform-
centralized pricing (which internalizes the cannibalization effect between sellers) and pricing-in sellers’ quality differ-
ences. My paper also speaks to the role of pricing algorithms but highlights a different tradeoff. I do not entertain the
possibility that the pricing algorithm directly acts as monopoly pricing (which might violate anti-trust laws, although
it is certainly possible in reality).

4On different topics, Zervas et al. (2017) estimates the impact of Airbnb listings on hotel revenue and demonstrates
a sizable substitution effect, primarily on low-end hotels. Farronato and Fradkin (2018) and Li and Srinivasan (2019)
structurally characterize Airbnb and hotels’ demand and supply, emphasizing that Airbnb hosts’ flexibility plays a
crucial role because hotels are capacity-constrained. Barron et al. (2020) and Garcia-López et al. (2020) examine
the effect of Airbnb listings on rental and housing prices. Fradkin et al. (2018); Zervas et al. (2020); Proserpio et al.
(2018); Zhang et al. (2019) study reputation, reciprocity, and image quality on Airbnb.

5Guests can book the preferred listing if the listing supports instant booking (28% listings support instant booking
in my sample). If not, guests can inquire about the listing, and 98% sellers respond to the inquiry within a day (60%
sellers respond to requests within an hour).

6During my sample period, Airbnb’s cancellation policy is typically much stricter than hotels. 25% listings employ
a “flexible” cancellation policy, allowing cancellation 14 days before check-in (or 48 hours after booking if booked
in less than 14 days). The 14% service fee is not refundable (see, e.g., https://www.bnbspecialist.com/airbnb-service-
fee-when-refundable/, accessed in September 2021). Beyond the “flexible” cancellation policy, 32% listings employ a
“moderate” policy and 43% a “strict” policy, further tightening the window in which a refund (net of service fee) can
be issued and increasing the penalty outside of this window.
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Upon booking, consumers pay the per-night price, a fixed cleaning fee (set by the seller), a

percent service fee set by the platform, and taxes (if Airbnb collects logding taxes on behalf of the

city). Airbnb keeps the payment until the stay is concluded. Airbnb also charges a percent seller

fee. This paper focuses on San Francisco, in which the platform charges a 3% (ad valorem) fee to

sellers and a 14% fee, plus a 14% transient lodging tax, to consumers.

Sellers might manage listings on their own or commission a management company. Manage-

ment services are expensive: a typical management company charges 12-40% of the total revenue.7

Interviews with practitioners suggest that the use of such services is uncommon. Few hotel or re-

sort chains operate directly on Airbnb,8 although some Airbnb hosts might be professional sellers.

Price-setting interface. To understanding the nature of pricing frictions on this market, I inves-

tigate the platform’s standard price-setting interface. Figure 1 shows screenshots of the interface

(captured in June 2020). The seller can set a base price for all nights. She can set a different price

for weekends (Fridays and Saturdays). Beyond that, she can individually set prices for each night

on the price calendar. To do so, she can select one night (or a range of consecutive nights), enter a

“nightly price,” and click “save” to confirm. In addition, once a night’s price is set, the only way

to change it is to manually adjust the price (changing the base price will not affect any existing

night). Given this interface, manually setting and changing the nightly prices is a labor-intensive

task. It is therefore not surprising to see many hosts complaining about the lack of a more conve-

nient interface. For example, Joanna14, an experienced Airbnb host, describes her frustration: “It

is proving TOO time consuming to maintain the pricing using the Airbnb standard [interface]... It

is just too basic and does not allow enough flexibility!”9

Airbnb has implemented two changes that affects price flexibility. First, in November 2015,

Airbnb launched a pricing algorithm, “Smart Pricing.” Sellers can opt in to Smart Pricing (see
7Source: https://www.guestready.com/blog/airbnb-management-service-choose. Accessed in June 2020.
8I examine whether the host’s name contains keywords such as “hotel”, “resort”, or other terms that indicate that

the host is a company. I find these keywords only consist of 0.61% of all listings, suggesting that very few hosts brand
themselves as a company (but a host can still be a professional seller). Full list of the keywords: Apartments, Corp,
Guest, House, Hotel, Inc, Rental, Resort, Room.

9Source: https://community.withairbnb.com/t5/Hosting/Lack-of-seasonal-pricing-forcing-me-to-consider-
leaving-Airbnb/td-p/328832/. Extracted in April 2021.
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top-left panel of Figure 1), in which case all prices are set by the platform’s algorithm by default.10

Whereas Airbnb does not officially discuss what the algorithm is, Ye et al. (2018), who are affiliated

with Airbnb, explain that the algorithm first estimates a reduced-form consumer demand function

using observed prices, and then solves for the revenue-maximizing prices for each listing. If sellers

have positive marginal costs (as my results show), the revenue-maximzing algorithm will price

lower than sellers. Consistent with this prediction, numerous articles and discussions argue that

sellers would have wanted higher prices but cannot achieve so with Smart Pricing.11,12

Another platform change that affects price flexibility is the introduction of “last-minute dis-

counts” in early 2019. This new feature allows the seller to pre-set a percent price discount and

a threshold in the lead time (time before check-in). For a given night, when the number of days

before check-in falls under the threshold, the percent discount is automatically applied to the price

of the night – without manual intervention by the seller. This feature is a part of the “professional

hosting tool,” which includes other features (e.g., monthly discounts) that are less relevant for this

paper.

Data and sample selection. The data come from Inside Airbnb (insideairbnb.com) and are

publically available under CC0 1.0 Universal License. These data cover all listings from 96 cities

or regions worldwide and are collected from Airbnb roughly at the monthly frequency since early

2015. At each data collection instance t, two datasets are relevant to this research. The first dataset

includes characteristics of the listing observed on sampling date t, such as the seller’s identity,

the listing’s available features or amenities, location measured by neighborhood, zipcode, and

coordinates, and average rating and price.

The second dataset is the calendar data. On sampling date t, I observe the availability status
10The seller can still manually override each night’s price in the calendar, in the same way as when she manually

sets nightly prices. She can also set a price floor and ceiling, which simply bounds the algorithm’s price.
11See, e.g., https://www.hostyapp.com/smart-pricing-sets-airbnb-rates-low/. Also see numerous forus discussions

on reddit/r/airbnb.
12Beyond using the platform’s algorithm, sellers can use paid third-party pricing software. Typically, using third-

party interfaces incurs a fee (usually 1% of total revenue) and requires the sellers to set up the software through
Airbnb’s API. While I do not have direct measures of who uses a pricing software, I later demonstrate that price
variations are low and display clear patterns consistent with the standard price-setting interface, suggesting that the
majority of sellers still use the standard interface to set prices.
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of each night τ—that is, 1 if the listing is available when searched on date t, and 0 otherwise.

Booking can start one year before check-in, and thus, I typically have 12 monthly observations for

each night τ . I interpret the listing-night as sold in-between t−1 and t, if the night is available on

t− 1 but unavailable on t. In case the listing-night is always unavailable for the entire 12-month

duration, I interpret the seller has “blocked” night τ , i.e., made it unavailable from the start. The

price of τ is shown if the night is available at t, and missing if the night is unavailable. I address

missing prices below.

I focus on Airbnb listings in San Francisco and take a subsample based on three criteria. The

first is to condition on listings who require a minimum stay of below three nights. The duration-of-

stay requirement is to eliminate weekly and long-term rental listings, which belong to a different

market.13 The second criterion restricts attention to the most popular listing types: private rooms

(38% of all listings in San Francisco), studios and single-bedroom apartments (31%), and two-

bedroom apartments (17%). This screening step eliminates shared rooms and large houses, both of

which are uncommon and do not appeal to mainstream customers. The last criterion is to condition

on listing-years when the seller blocks no more than a quarter of nights. 25% of listings are dropped

from the sample, which I interpret as part-time sellers (who might have very different incentives

than full-time sellers).14 After these three steps, I arrive at a sample of 18,054 listings, operated by

12,856 sellers, observed over 54 months. In total, the sample consists of 30,864,535 observations

on the listing-night-sampling date level.

Missing data and interpolation. The monthly sampling rate creates a truncation problem: I

do not see the exact date when the booking happens, and, in case when the last sampling date is

still far from the night of stay, the night might be sold after the last observation. This truncation

problem necessitates the interpolation of the booking outcomes.

I leverage the fact that some nights are close to the last sampling date, in which case the
13On the platform, 67% listings require a minimum stay of no more than 3 nights, 11% require a minimum stay

of between 4 and 7 nights, 1% between 8 and 29 nights, and 21% above 30 nights. Requiring a minimum stay above
30 nights will put the listing in the long-term rental market and will exempt it from the hotel-lodging tax and other
regulations.

14Of the remaining listings, 75% are available for at least 305 nights out of a year, and 50% are available all year.
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truncation problem disappears. The data collection timing is fixed and thus should be orthogonal

to unobserved market outcomes. Thus, conditional on observables such as day-of-the-week and

seasonality, nights further away from the last sampling date should have the same true occupancy

rate as nights closer to it, but the measured occupancy rate is lower due to truncation. I leverage

this feature to interpolate the occupancy rate (and draw occupancy outcomes from the interpolated

occupancy rate) for nights that are further away from the last sampling date. Appendix A provides

additional details.

The low sampling frequency also creates a missing price problem. I do not see prices after

a listing is booked, and thus do not see the exact price when the booking occurs. To interpolate

prices, I leverage the observation that pricing strategies are highly simplistic for most listings.

Section 3 documents that most listings either set uniform prices across all nights or follow simple

pricing strategies that set prices conditional on weekend and month-of-the-year. For these listings,

I interpolate the price of the booked night by estimating a pricing-policy function using the prices

of other (not-yet-booked) nights. For example, if all observed prices are uniform, I assume that the

unobserved price is the same as all observed prices. Appendix A provides details and shows that

the majority of the interpolated nights are associated with simple policy functions. Still, for a small

fraction of listings with flexible prices, the interpolated prices (coming from unsold nights) might

be systematically biased. In this paper, I only use the observed (non-missing) prices in descriptives

and supply-side estimation (and the interpolated prices are used in demand estimation).

3 Pricing strategies and frictions: empirical observations

This section presents summary statistics about seller characteristics and explores the extent to

which these characteristics explain the heterogeneity in pricing strategies across sellers. I start by

demonstrating that most sellers set unsophisticated prices that do not seem to respond to demand

and opportunity cost differences, whereas a small fraction of them set sophisticated prices. Then,

I show that this heterogeneity likely comes from inherent “seller type” differences. Although
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multi-listing sellers appear to be more sophisticated, this difference does not come from within-

seller changes in scale (reflecting, e.g., management or thinking costs) or experience. I further

examine plausible drivers of the lack of flexible pricing, and I demonstrate that price-adjustment

costs explain some, but not all, lack of sophisticated pricing.

3.1 Heterogeneity in pricing strategies

Examples, and possible algorithmic pricing. To get a sense of what pricing strategies look like,

I randomly draw 25 listing-sampling date level observations and plot their prices across nights.

Figure 2 shows that prices follow strong uniformity patterns for most of these listings. 10 out of 25

listings have completely uniform prices, some listings have weekday-weekend patterns, and most

others have large clusters of consecutive nights set at the same price. However, a few of them have

significantly higher degrees of price variation.

Next, I examine listings whose prices are far from uniform. Specifically, I examine the set

of listing-sampling dates, where the residual price variation conditional on weekend and month

(detailed later), falls into the top-5%. I randomly draw 25 listing-sampling date observations out

of this set. I find that the pricing patterns are complex for almost all of them and are difficult to be

set by the standard interface. Meanwhile, prices share common, intuitive patterns: They are highly

seasonal, with higher summer prices and lower winter prices, a polynomial-like baseline, and clear

weekend patterns (but with heterogeneous weekend surcharges). One might speculate that these

prices are set by algorithms or at least set with the algorithm’s recommendation.

Measure of price variability. To formalize the above patterns, I construct three price-variability

measures. First, to get a sense of overall price variation, I compute the standard deviation of log

price across all nights τ for listing j holding fixed the sampling date t:

std
(
log
(
price jτt

))
| j,t . (1)
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Figure 2: Pricing patterns of randomly drawn listings

Notes: Prices for 50 randomly drawn listings. The X-axis is the night of the stay. The top 25 are drawn from all listings. The bottom 25 are drawn

conditional on the residual price variation above the 95th percentile.
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This standard deviation measures the percent-price variation across nights for a given listing: If

the listing sets uniform prices across all nights and do not change prices over time-to-check-in, this

standard deviation should be zero. If the listing’s pricing policy function is simple, this standard

deviation should be absorbed by state variables such as a weekend dummy (or in addition, month

dummies).

The second measure focuses on the degree of price changes over lead time, i.e., time before

check-in. Optimal Airbnb pricing should be dynamic: If the lead time is high, selling the listing

today precludes selling it tomorrow (or the option value to sell in the future is high). In contrast,

if check-in is imminent, the option value is low. As a result, prices should start high to capture

the option to get high willingness-to-pay customers, and decrease (in expectation) over time as

the option value dwindles. One way to measure the extent of dynamic pricing is to compute the

average percent-difference between the last-month price and the initial price, or

E

[
1−

price j,τ,12

price j,τ,1
| j, t

]
. (2)

Third, to measure the degree of price uniformity across salient demand shifters, I compute the

percent summer price premium (where summer is the quarter from July to September), weekend

price premium, and holiday price premium. These “%premiums” capture the extent to which the

host sets different prices across nights, of which the underlying demand is different. I mainly

present the summer price premium in this section but show all measures in the appendix. This

construction is closely related to Leisten (2020), who examines the extent to which chain and

independent hotels use prices to capture salient and non-salient demand shifters.

Summary statistics. I summarize sellers’ scale of operation and years of experience in the mar-

ket, the distribution of price and quantity, and the three measures of price variability across nights

and over time-to-check-in. Table 1 presents this summary. One finds sizable heterogeneity in the

scale of operation and experience. For example, the median property is operated by single-listing

sellers with 3 years of experience, whereas 25% properties are operated by sellers with at least 3
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Table 1: Summary statistics across listings
mean 5 pct 25 pct median 75 pct 95 pct

total number of listings 4.002 1 1 1 3 11
years of experience on Airbnb 3.622 0 2 3.5 5 7
number of nights supplied (per 365 nights) 329 212 303 360 365 365
occupancy rate 0.612 0.045 0.370 0.693 0.872 0.997
price 188 72 108 150 235 410
std. of log price across nights 0.076 0.000 0.000 0.050 0.110 0.263
number of distinct prices (per 365 nights) 16 1 2 4 16 75
(negative of) %last-month discount 0.05 -0.11 -0.01 0.02 0.10 0.31
%summer price premium 0.024 -0.040 -0.003 0.004 0.035 0.158

Notes: All variables are measured at the listing-month level, and then averaged across months for each listing.

listings or at least 5 years of experience.

The table also presents considerable heterogeneity across the average occupancy rate and price

levels of sellers. The top quartile of sellers are able to fill their properties at least 87% of the time,

whereas the bottom quartile have their properties mostly empty. There is also a significant price

dispersion: The 75th quantile of price, at $235, is more than two times of the 25th quantile at $108.

Further, the table demonstrates a systematic lack of price variation across nights and over time

to check-in: The median standard deviation of price across nights is only about 5% of price, which

is only about $7 at the median price. An alternative measure of price variability is to count the

number of distinct price points (normalized by the number of nights supplied). The median listing

has only 4 distinct price points per 365 nights, consistent with low price variation. In addition,

summer prices are less than 0.4% higher for the median listing, and the last month (before check-

in) prices are 2% lower than the initial price, despite high summer demand (shown later) and the

decline in option value as the check-in date approaches. However, a small fraction of listings do

display significant price variations. For example, a quarter of listings set at least a 11% standard

deviation between nights (at least 16 distinct price points), charge at least 3.5% summer price

premium, and provide 10% or more last-month discounts.

The lack of price variation over time, for the majority of listings, are consistent with price

rigidity shown by Pan (2019). In addition, the lack of price flexibility across nights further suggest

Airbnb hosts’ inability or unwillingness to set prices that reflect demand differences across nights.
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Figure 3: Unconditional and conditional (on weekend and month) price variation

Notes: Histogram of the unconditional standard deviation of log prices across nights, and the conditional one given weekend and month of the

night.

This evidence is in line with uniform retail pricing across markets (DellaVigna and Gentzkow,

2019).

Decomposition of price variation. One conjecture of the lack of price variation is that many

sellers use the standard price-setting interface provided by the platform, where all price changes

and most flexible pricing policies (other than weekend pricing) have to be implemented manually.

This interface’s lack of feature implies that observed prices are functions of simple state variables,

namely weekend dummies and month of the year (the latter is a proxy for “chunky” prices). To

offer initial summary statistics related to this conjecture, Figure 3 shows residual (percent) price

variation after controlling for weekend and month-of-the-year dummies. For the median listing,

the residual price variation is down to 0.5% of price, one-tenth of the unconditional price variation.
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3.2 Firm size and pricing strategy

I further examine the extent to which sellers’ different pricing strategies can be explained by their

observed characteristics. In particular, can “firm size”—the number of listings operated by a given

seller—explain the degree of price variation for Airbnb sellers? The hypothesis is that multi-listing

sellers (as a proxy for professional sellers) are more sophisticated in their pricing decisions. That is,

we should see a larger degree of price variability (within listing) for sellers (h) with more listings,

in the following regression,

std(log(price)) jt = β#listinght
I#listinght

+δm( j)t +X jtγ + ε jt . (3)

In this regression, std(log(price)) jt is the standard deviation of log price across nights τ within the

same listing j-sampling date t. To interpret β#listinght
as the “firm size effect,” one should compare

similar listings operated by different sellers. I control for neighborhood-sampling time fixed effects

δm( j)t , and observed characteristics X jt which includes (1) fully saturated neighborhood×listing

type×number of rooms×max number of guests fixed effects, and (2) amenity fixed effects.

Table 2 (A) shows that, conditional on observationally similar listings, multi-listing sellers

adopt more sophisticated pricing strategies than single-listing sellers. The standard deviation of

prices across nights is 1.1 to 6.4 percentage points (pp.) higher for multi-listing sellers. Likewise,

multi-listing sellers offer a 1.4-3.6 pp. higher last-month discount and charge a 0.4-2.1 pp. higher

summer price premium. All three measures are statistically significant and economically large

(across different measures, 6+ listing sellers’ degree of price variations is amost twice that of

single-listing sellers). Appendix Table 4 show that this finding is robust to other measures of price

variability.

Not explained by scale economy or learning. One plausible explanation of the difference in

pricing frictions between seller types is that single-listing sellers have small operation scale and

thus find it cumbersome to use sophisticated strategies. In other words, good pricing practices
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Table 2: Pricing strategy differences and sellers’ number of listings
(A) Across-seller differences (without seller FEs)

Dependent variable:

std of %prices %last-month discount %summer premium

(1) (2) (3)

2 listings 0.011∗∗∗ −0.014∗∗ 0.004∗

(0.003) (0.005) (0.002)

3-5 listings 0.023∗∗∗ −0.036∗∗∗ 0.016∗∗∗

(0.004) (0.007) (0.003)

6+ listings 0.064∗∗∗ −0.021 0.021∗∗

(0.015) (0.018) (0.009)

baseline Y 0.067 -0.044 0.019
seller FE no no no
loc.-time/type and amenities FE yes yes yes
Observations 71,565 70,686 70,594
R2 0.413 0.393 0.399

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(B) Within-seller changes (with seller FEs)

Dependent variable:

std of %prices %last-month discount %summer premium

(1) (2) (3)

2 listings −0.0001 0.004 −0.006∗∗

(0.003) (0.005) (0.003)

3-5 listings 0.001 0.005 0.001
(0.004) (0.007) (0.004)

6+ listings 0.020∗∗ −0.003 −0.0002
(0.008) (0.011) (0.010)

seller FE yes yes yes
loc.-time/type and amenities FE yes yes yes
Observations 71,565 70,686 70,594
R2 0.746 0.820 0.727

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Baseline Y is the conditional mean of the dependent variable for single-listing sellers. Panel A focuses on differences between sellers with

different #listings. Panel B controls for seller fixed effects (FEs), focusing on within-seller changes in #listings. Standard errors are clustered at the

seller level.

20



incur higher fixed costs (e.g. hiring a manager) and thus is not uptaken by everyone. A related

explanation is that good pricing practices come from learning by doing. That is, single-listing

sellers are less experienced and find it costly to implement or “think through” a sophisticated

strategy. Table 2 (B) shows that, as the number of listings increases within a seller, there is virtually

no response in the degree of price flexibility. This finding suggests that sophisticated pricing is not

a choice driven by fixed costs. Further, Appendix Table 3 demonstrates that learning does not

explain differences in pricing strategies.

Main explanation: persistent seller heterogeneity in frictions. My main explanation of the

finding is persistent heterogeneity between sellers in their pricing strategies, which is correlated

with (but not driven by) the number of listings. In particular, single-listing sellers face a greater

extent of pricing frictions, and thus, tend to set fixed prices across nights and/or over time.

In this context, one plausible driver of this friction is the time or effort in setting flexible prices

under the standard interface. One would imagine that single-listing sellers face higher price-setting

costs than multi-listing sellers (yet the above discussion suggests that these costs are not fixed

costs). Another explanation is that some sellers face persistent cognitive constraints, such that

they are bounded by using simple, heuristic-like, pricing strategies. For example, many surveys to

professional managers (e.g., Hall and Hitch, 1939; Noble and Gruca, 1999) document that they use

simple pricing heuristics such as “cost-plus” pricing. Many sellers on Airbnb (especially single-

listing sellers) are not professional managers, suggesting that they might be more likely to follow

simple behavioral heuristics. Section 3.3 and the structural model seek to distinguish between

these two explanations.

3.3 Response to changes in the price-setting interface

Based on the above findings, this section further asks: Are the frictions driven by sellers’ price-

setting costs or sellers’ cognitive constraints? Separating the two is important. If price-setting costs

are the primary explanation, the platform can improve the interface to help with prices’ flexibility.
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But if sellers are constrained by their cognitive abilities, simply making the pricing interface more

complex might not help them (and might even hurt them). When sellers face cognitive constraints,

the platform might play a more active role in price-setting.

The ideal variation to separate the two mechanisms is to make pricing less costly for sellers

and observe how many sellers (or which segment of sellers) react to this change. If all sellers are

constrained by price-setting costs, they should set flexible prices when the price-setting costs are

reduced. If all sellers are bounded by cognitive abilities, the flexible interface will not make prices

more flexible.

From early 2019, Airbnb implemented a a new feature, “last-minute discounts,” to make price

adjustments easier.15 This feature allows the seller to set one percentage markdown if the lead

time falls below one threshold (set by the seller). Therefore, measuring the extent to which prices

as a function of lead time changes before and after this interface update will help us understand

nature of pricing frictions over time. If prices stay fixed because adjusting them is a labor-intensive

process, sellers should set the optimal percent-discount after this feature is launched, and prices

will be closer to the optimal dynamic-pricing path (but given that the feature only permits one

percent change, prices will not coincide with the optimal path). Yet, if prices are fixed because

sellers are cognitively constrained and do not think about dynamic pricing, prices will remain

fixed under the new interface.

I estimate a regression of log price on a set of lead-time dummies (in weeks) by year, controlling

for listing fixed effects δ j.

log
(
price jτt

)
= γτ−t,y(t) · Iτ−t× Iy(t)+δ j + ε jτt , (4)

where γτ−t,y(t) captures the average price path as a function of lead time τ − t and separately by

the year of the sampling date y(t). The idea is to approximate the average pricing profile as a

15I use google archives to pinpoint that the change date is around January 2019, indicated by a surge of discussion
about this feature. But there are sparse report that some hosts have received pilot trials of this system in 2018. Although
the official website states that this feature is available for hosts with at least two listings, single-listing hosts also report
having access to this feature.
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Figure 4: Price paths over lead time, by calendar year

Notes: Regression coefficients from Equation (4).

function of lead time and to see whether the shape of this profile changes in 2019 after the change

of pricing interface (whereas other years’s price paths should not differ much). Figure 4 shows the

change of price profiles by year and demonstrates that the 2019 profile trends down more. This

change is consistent with the conjecture that price-adjustment costs at least partly explain the price

rigidities before 2019. After 2019, sellers can set a policy to lower prices as the night approaches

(and different sellers might set different thresholds for the price drop to happen), instead of visiting

the pricing page often to adjust prices.

However, a significant lack of dynamic pricing remains after the platform’s change in interface.

One way to present this observation is to look at the fraction of sellers using a dynamic pricing

strategy and how this fraction changes before and after 2019.16 The first row of Table 3 shows

that 45% sellers use a dynamic pricing strategy, higher than the 36% before the introduction of

the last-minute discount feature. However, 55% sellers –more than half of them– still do not set

meaningful dynamic-pricing paths. The lack of dynamic pricing suggests that price-setting costs

are not the only explanation.

16I define dynamic pricing as the average slope (over lead time) is steeper than 1% per month.
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Table 3: Fraction of sellers using dynamic pricing: before and after 2019

2015-2018 2019-2020

All sample 0.36 0.45
Sellers with six or more listings 0.38 0.46

Notes: Share of listings using dynamic pricing, defined as the average price decline per month of lead time is greater than 1% (in the last four

months of lead time).

Not lack of awareness to the feature change. Another explanation for the lack of dynamic

pricing after 2019 is that some sellers are not aware of the pricing interface change. Whereas many

sellers have to activate the last-minute discount feature, the platform explicitly pushed this feature,

as part of the “professional hosting tool,” to sellers with six or more listings. The second row of

Table 3 conditions on this subset of sellers and find low adoption of dynamic pricing, virtually

identical to the first row. This finding suggests that the lack of awareness of the dynamic-pricing

feature is not the main explanation.

4 Structural model and estimation

This section introduces the structural model, which contains three parts: (1) consumer demand for

Airbnb listings, (2) sellers’ dynamic pricing decisions, (3) and sellers’ participation decisions on

the platform. The purpose of constructing a model is to uncover demand primitives and sellers’

marginal costs, establish the “first-best” market outcome (where all listings price optimally to

maximize profits), and simulate counterfactual market outcomes under alternative market designs.

I introduce two incremental innovations to the demand model. First, I combine a nested fixed-

point algorithm—typically used in random-coefficient logit models (Berry et al., 1995; Goolsbee

and Petrin, 2004; Chintagunta and Dubé, 2005; Tuchman, 2019)—with sparse-demand models

(Williams, 2021; Pan, 2019). This algorithm vastly improves the scalability of existing sparse-

demand models and makes them viable on large datasets of differentiated products. Second, I

present a new instrumental variable for price, leveraging the extent of price frictions in the context.

Due to computer-memory constraints, the structural model uses a random subsample consisting

24



of 75% of the full sample. Appendix D discusses model details.

4.1 Consumer demand for Airbnb

Model setup. Two types of customers, denoted k = 1,2, arrive at the San Francisco Airbnb

market. Consumer i of type k comes in month t and looks for a listing for the night τ in zipcode m.

Her utility for booking listing j is

uk
i jτ = δ jq(τ)+α

k log
(
(1+ r) · p jτt(i)

)
+ξ jτt(i)+ εi jτ . (5)

The consumer can choose not to book any listings, in which case she books a hotel and exits

the market. Thus, the arrival time t is fixed given consumer identity i (hence the notation t (i),

later simplified as t). δ jq(τ) are fixed effects for listing j in the quarter of the night, q(τ), which

absorbs quality, amenities, ratings and reviews, cleaning fee, and other unobserved features that

vary infrequently. p jτt(i) is the price for night τ if booked in period t where the consumer i comes

to the platform. r is a constant representing the percent service fees Airbnb charges on top of the

list price. ξ jτt(i) captures unobserved demand shocks for night τ at time t – for example, a game

occurs on day τ and is announced before time t. It will be clear later that, because I use a control

function to address price endogeneity, I will parameterize ξ jτt(i) = ση jτt(i), where η jτt(i) is the

error term of a first-stage price equation, and σ is an additional scale parameter. εi jt is a Type-1

extreme value error term.

I normalize ui0τ = εi0τ if the consumer does not book any listing. With this structure, we have

a logit demand at the individual level:

sk
i jτ =

exp
(
δ jq(τ)+αk log

(
(1+ r) · p jτt(i)

)
+ξ jτt(i)

)
1+∑ j′∈Jmτt exp

(
δ j′q(τ)+αk log

(
(1+ r) · p j′τt(i)

)
+ξ j′τt(i)

) , (6)

where Jmτt is the available set of listings at the time t for night τ in zipcode m.

Type k customers arrive at a Poisson rate λ k
mτt , for zipcode m, night τ , and booking date t. I

assume the arrival rate depends on the customer type, lead time (a linear function), whether τ is on
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a weekend or a national holiday, day of the week dw, and month of the quarter mo (the first month

of each quarter is normalized to zero, given δ jq’s). Specifically,

λ
k
mτt = γ

k
0m exp

(
−γ

k
1 · (τ− t)+ γ

k
2 · Iholiday(τ)+ ∑

dw=1,...,6
γ

k
2+dw · IDOW(τ)=dw + ∑

mo∈{2,3,5,6,8,9,11,12}
γ

k
8+mo · IMOY(τ)=mo

)
.

(7)

For the largest market m̄ (zipcode 94110), I normalize γ1
0m̄ = 1000. That is, in the last month before

check-in, 1,000 segment 1 consumers arrive to book listings around Mission District. I normalize

γ1
0m for other markets to be proportional to the total number of rentals relative to m̄. I can then

estimate the number of consumers in segment 2, and how each segment’s arrival changes with

time-to-check in, day of the week and month of the year (see Appendix D.2 for detail).

Nested fixed point algorithm and estimation. There are 33,354 listing-quarter level inter-

cepts, δ jq’s, which are nonlinear parameters in the model. Jointly estimating them via maximum

likelihood is infeasible, yet omitting them (for example, assuming that listings only differ in ob-

servable characteristics) makes demand too restrictive.17 To allow for δ jq’s in the model, I intro-

duce a nested fixed-point algorithm to the model, bridging the gap between demand for capacity-

constrained perishable products (Williams, 2021; Pan, 2019; Hortaçsu et al., 2021) and demand

analysis in non-capacity-constrained products (Berry et al., 1995).

The main idea is to collapse observed (binary) occupancy outcomes on the listing-night level to

compute (continuous) occupancy rates on the listing-quarter level. Built on Williams (2021) and

Pan (2019), Appendix D.2 derives a close form expression for the quarterly occupancy rate,

1
|q| ∑

τ∈q
occupancy jτ = s̄ jq

(
δ q
)

:=
1
|q| ∑

τ∈q

(
∑
t

(
1− exp

(
−s1

i jτ ·λ 1
mτt− s2

i jτ ·λ 2
mτt
))

A jτt

)
. (8)

Denote A jτt as the availability of listing j, night τ at the beginning of month t. The left-hand

side of the first equality is the observed quarterly occupancy rate. The right-hand side is a closed-

17For example, a vast literature highlight the importance of reputation (e.g., Fradkin et al., 2018). The reputation
effect is consistent with my descriptive evidence that prices tend to increase as the host stays longer on the platform.
Also, Zhang et al. (2019) show that image quality plays a role in driving demand for Airbnb listings. Reputation
(reviews) and pictures are two examples of many unobserved demand shifters.
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form expression of the occupancy rate, a function of all listing fixed effects in the quarter, δ q =(
δ1q, ...,δJq

)′
and other demand parameters, αk, γk and σ . Given these parameters, one can exactly

solve for δ jq’s by stacking J equations with J unknowns for each quarter.

Estimation follows the maximum likelihood estimator (with a nested fixed point) similar to

Goolsbee and Petrin (2004), Chintagunta and Dubé (2005), and Tuchman (2019). Specifically, for

each set of trial parameters
(
α1,α2,γ1,γ2,σ

)
, I compute δ jq via a fixed point algorithm, which

then allows me to evaluate the likelihood value.18

Uniform-pricing instrument (control function). Price p jτt might be endogeneous to unob-

served demand shifters ξ jτt(i). These demand shifters potentially capture unobserved local events

on night τ or other changes within a listing-quarter.

I propose a new price instrument that leverages the extent of pricing frictions in the market. The

main idea is that prices often set uniformly across unrelated nights. In particular, far-apart nights,

say τ ′, might have the same price with the focal night τ only because it is convenient to the seller

to set one price for different night. The costly price adjustments in the standard interface further

makes prices of consecutive nights either persistent or adjusting at the same time. Thus, pricing

frictions create correlation in prices between dates τ and τ ′ even when the underlying demand

shocks are uncorrelated (after controlling for listing-quarter fixed effects δ jq). Based on this idea,

for a focal night τ , I construct the average price for nights τ ′ in different quarters of the focal date τ .

I further use the one-month lagged price for each τ ′ to guard against simultaneity. These “uniform

pricing” instruments are, to my knowledge, new to the literature on demand estimation and might

have broader applicability beyond Airbnb given the wide variety of markets with uniform prices

(DellaVigna and Gentzkow, 2019; Adams and Williams, 2019; Hitsch et al., 2019).

I show in Appendix section B that this instrument strongly predicts price, with an excluded-

variable F-statistic on the order of 10,000 in linear specifications with the same set of controls.

18Availability A jτt is known in the data during estimation. The fixed point (8) can be solved quickly because A jτt
is known (different from Tuchman, 2019, who needs to simulate individual states). In the counterfactual, while I need
to I forward-simulate availability A jτt , the δ jq’s are already solved, and one does not need to repeat the fixed point
algorithm.
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I also show that this “uniform pricing” instrument produces very different results from using the

lagged price as an instrument, with the latter potentially endogenous to time-invariant unobserv-

ables on each night (e.g., events on given dates).

Given the nonlinear demand model, I adopt a control function approach (Petrin and Train,

2010) where I allow prices to be a function of observables x jtτ and the uniform pricing instruments

(or strictly speaking, excluded variables) z jtτ , or

p jτt =
(
x jτt ,z jτt

)
·φ +η jtτ . (9)

I estimate this first stage and obtain the residual η̂ jτt as the proxy for demand shocks—that is,

ξ̂ jτt = ση̂ jτt . This approach implicitly assumes that prices fully capture unobserved demand fac-

tors ξ jτt .

4.2 Optimal dynamic pricing decisions

Listings make two decisions. Each listing makes a participation decision for each quarter: Con-

ditional on having entered the market, it decides whether to stay in the market. Then, the listing

makes pricing decisions. I characterize observed prices as mixtures of different extent of cognitive

constraints: (1) dynamic pricing for each night, with no cognitive constraint (but possibly facing

price-adjustment costs), (2) cognitively constrained sellers making setting non-dynamic prices,

which does not vary over time but might (or might not) vary across nights. In this section and the

next, I characterize the two types of pricing decisions.

Optimal prices are determined by a finite-horizon dynamic pricing problem where the seller

faces price-adjustment costs. I model these adjustment costs as sellers drawing a chance to set

prices with probability µ j (Calvo, 1983). The paramter µ j is heterogeneous across sellers and

captures the possibility that the seller does not make price adjustments even if it is profitable to do

so.

Now, sellers’ optimal dynamic pricing accounts for the possibility of future inaction. Denote
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the probability that at least one customer books listing j for night τ during month t as q jτt . Denote

the inclusive value for choosing all listings other than j as ω jτt (Pan, 2019), which represents the

“state” of the market governing the competitive set for listing j. Also define π jτt as the static flow

profit of listing j if date τ can be rented out in month t:

π jτt
(

p,ω jτt
)
= q jτt

(
p,ω jτt

)
·
(

p · (1− f )− c j
)

(10)

where f = 0.03 is the fixed fee platform sets for all sellers in San Francisco and c j is the marginal

cost for hosting for a night.

With these notations, one can characterize the observed price path set by an optimizing listing

j, with inaction probability 1−µ j, as

pdynamic
jτt =


p∗jτt probability µ j

pdynamic
jτ,t−1 probability 1−µ j

. (11)

Note that p∗jτt is the optimal price when the seller sets prices (with probability µ j), which is differ-

ent from the observed prices pdynamic
jτt . When setting the optimal price, the seller solves an optimal

dynamic programming problem for the optimal price p∗,

max
p

π jτt
(

p,ω jτt
)
+
(
1−q jtτ

(
p,ω jτt

))
E
[
Vjτ,t+1

(
p,ω jτ,t+1

)
|p,ω jτt

]
, (12)

i.e., the seller balances current profit π jτt
(

p,ω jτt
)
, which depends on the probability that night τ

can be rented out now, and future value Vjτ,t+1, which is multiplied by the probability that night

τ remains on the market. The value Vjτ,t+1, and thus optimal dynamic price p∗jτt can be solved

via backward induction. The details (including an illustrative example) are presented in Appendix

D.3.
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Discussions. Several properties of this structure warrant discussion. First, the value Vjτ,t+1 gives

an “option value” for the night τ , such that the seller has an incentive not to sell it immediately

but keep prices high in search of a high-willingness-to-pay consumer. This term drives the optimal

dynamic prices higher (in expectation) than the static optimal price until the lead time τ − t gets

to zero (when pricing reduces to a static optimization problem). In other words, optimal dynamic

prices decrease as the time-to-check-in approaches because of the declining option value in Vjτ,t+1.

Second, if the seller draws an action and can adjust prices, she rationally expects a probability

1− µ j that her current prices will be carried into the next period (hence the value Vjτ,t+1 also

depends on p). This expectation changes her current price p∗, generally making p∗ declining

quicker than the optimal price without the inaction probability. See Appendix D.3 for a detailed

discussion with an example.

Third, sellers form rational expectation on future states ω jτt ′ for t ′ > t. I assume that sellers

take the predicted ω jτt ′ using information up to t, or Et
[
ω jτt ′

]
.19 In past versions, I also assumed

perfect foresight and second-order Markov belief, and have found similar estimates between these

assumptions.

Lastly, one feature I simplify away is multi-product pricing. In principle, owning multiple

listings will raise the price of each listing due to cannibalization among them. However, given the

large choice sets and that no seller holds a sizable portion of the market, substitution within a seller

can be safely ignored, which significantly simplifies the pricing model.

4.3 Pricing with (non-dynamic) cognitive constraints

If price-adjustment costs are the only source of departure fully flexible optimal prices, dynamic

price paths pdynamic
jτt should approximate the observed prices. However, section 3.3 has shown

that many sellers do not use dynamic pricing when such strategies are made easier to implement.

19Specifically, for each seller segment l (introduced later), I estimate

ω jτt ′ = b0l +b1l · t +b2l · t2 +b3l ·ω jτt +∆ω jτt ′

and take the prediction, Et
[
ω jτt ′

]
, to approximate seller expectation.
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Consistent with this finding, I characterize sellers’ pricing behavior subject to a non-dynamic-

pricing constraint (interpreted as a cognitive constraint). These non-dynamic-pricing sellers are

also subject to price-setting costs, limiting the degree of flexibility of their pricing policy.

Specifically, for listing j in quarter q, a non-dynamic pricing seller will divide all nights into

1 ≤ K jq ≤ 90 bins (where each bin includes consecutive nights), and manually set one price for

each bin. A high K (e.g., K→ 90) reflects low price-setting costs, and as a result, flexible prices

reflecting the different underlying demand across nights (although they are still time-invariant). A

low K reflects the case where the seller finds it costly to manually set prices on the calendar, in

which case her prices will show little variation despite the different underlying demand.

Specifically, listing j in quarter q draws the number of distinct “price bins” from a Poisson

distribution, K jq(τ) ∼ Poiss
(
ρ j
)
, and within each bin, prices must be the same. ρ j ∈ (1,∞) is

the expected number of price points that the listing can set in a quarter. The higher the ρ j, the

more flexible the prices are. I further assume that the listing knows which consecutive nights

(bins) to set the same price, conditional on the number of bins K jq = K. I first search for K

clusters of consecutive nights where similar consecutive λ̄ jτ (average consumer arrival across the

two segments) are clustered together. This results in a partition of nights such that nights in each

partition τ ∈
(

τ̄k−1, τ̄k
]

will be charged the same price. Therefore, given K, one can write the

pricing problem as setting one price to optimize the total profit from a given partition of nights:

p̄k
j (K) = max

p

τ̄k

∑
τ=τ̄k−1+1

(
p− c j

)
·E
[
occupancy jτ (p)

]
. (13)

The notation pk
j (K) implicitly ackowledges that the partition-specific prices depends on the number

of partitions, K. The exact partitions (τ̄k−1, τ̄k] also changes with K.

Integrating over the realization K, one can summarize the listing’s optimal non-dynamic prices

as

p̄non-dynm
jτ = E

[
p̄k(τ)

j |ρ j

]
. (14)
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Modelling observed prices. I then characterize the observed prices of listing j as a weighted

average between the optimal dynamic price pdynamic
jτt and the optimal non-dynamic prices p̄non-dynm

jτ ,

p jτt = θ j p
dynamic
jτt +

(
1−θ j

)
p̄non-dynm

jτ . (15)

Here, θ j → 1 (0) will indicate that listing j is the type that sets dynamic (non-dynamic) prices.

Whereas it is hard to interpret a θ j in-between 0 and 1 as a fixed seller type, I will later show that

many listings have θ j’s close to either 0 or 1.

4.4 Identification of the pricing model: An example

I now illustrate which moments in the data identify sellers’ price-changing probability (µ j), number

of price points (ρ j), and their tendency to set dynamic prices (θ j). I will present one example and

compute its observed prices over time and across different nights, given the estimated demand

but under different supply-side parameters. All identification arguments work within a listing,

although there is some pooling across listings in estimation.

I first set c j = 0, assume that the listing is fully optimizing and is not subject to any frictions

(θ j = 1, µ j = 1). The right-most panel in Figure 5 (A) presents the distribution of these “ideal”

prices across nights and over lead time (months before check-in). The solid line represents median

prices in a given month relative to check-in, and the dashed lines are the 5th and 95th percentiles.

The corresponding (right-most) panel in Figure 5 (B) shows the last-month price for each night

of the quarter. One finds that prices start at around $110 in the median but range between below

$100 to over $140 depending on the night-of-stay’s popularity. Moreover, whereas the median

price goes down the closer it is to the check-in date (due to the increasing risk of not selling by the

check-in date), prices for high-demand nights increase to over $200 at one month before check-in

(due to the scarcity of those nights and the large number of late-arriving customers). This is the

optimal price path.

I then add price-adjustment costs, setting the inaction probability µ j = 0.25. That is, the listing
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sets prices about 1/4 of the months and the forward-looking, rational seller knows about it. Shown

in the second panel to the right of Panel A and B, the seller-set prices follows the dash-dot line

(which, until the last period, overlaps with the solid line). Price-adjustment costs smooths out the

optimal price variation over time: In each period, there is a possibility that the seller does not adjust

prices when she should, and the seller adjusts prices preemptively in response to this possibility.

Therefore, the degree of price variation over time identifies µ j.

What happens when sellers are cognitively constrained and sets non-dynamic prices? The first

four panels from the left of Figure 5 (A and B) show three examples of non-dynamic prices: A

complex scheme with 20 different nightly prices, and less flexible pricing schemes with six, two,

and one price. Sellers who can set many price points (high ρ j) will be able to capture most of

the nightly demand variation, despite not being able to adjust prices over time. Conversely, sellers

who cannot set many price points (low ρ j) will set inflexible nightly prices, with many contiguous

nights “lumped together.” The degree of flexibility across nights identify ρ j.

Finally, what identifies the cognitive constraint from price-adjustment costs? Recall that the

2019 change in the price interface allows the seller to automatically adjust prices in the last period,

resulting in a chance in the last-month price path (see the solid line, which departs from the dash-

dot line).20 Note that even if µ j = 0, the last-minute discount feature will still drive prices down in

the last month. Therefore, the extent of last-month price change after 2019 distinguishes between

low-µ j sellers and sellers who are cognitively constrained from dynamic pricing (θ j = 0).

4.5 Estimation of the pricing model

I follow Bonhomme et al. (2019) and Pan (2019) to cluster all listings into segments based on

their observed characteristics and observed actions. The underlying idea come from Bonhomme

et al. (2019), who show that such ex ante clustering can approximate a model with continuously-

distributed persistent heterogeneity with a flexible distribution. This method is desirable for my

20I assume sellers set last-minute discounts in the last month, which is a simplifying assumption but it agrees with
the pattern shown in Figure 4.
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paper because it does not impose strong shape restrictions on the joint distribution of seller param-

eters.

I cluster all listings into 150 groups by their observed prices and characteristics. Specifically,

for each listing j, I first obtain its demand intercept, the number of listings operated by the owner,

the listing’s median price, price discount in the last two months before check-in, and the difference

in its last-month discount after and before the 2019 interface change. Demand and the number of

listings are important characteristics to control for. The vector of price moments closely resembles

my identification arguments (which is important for the ex-ante split segments to resemble the

underlying heterogeneity, see Bonhomme et al., 2019). I then use hierarchical clustering to group

all listings into 150 clusters.

I give ρ j an upper bound of 31 to ease computation burden. The above numerical example

shows that 20 prices are already quite flexible to represent the shape of (a cross-section of) optimal

prices.

Next, for each cluster l which j belongs to, I estimate c j(l), µ j(l) and θ j(l) using a generalized

methods of moment (GMM) approach. Specifically, I match the following moments for each

cluster l: (1) median price conditional on months-to-check-in (m1l , a 12× 1 vector), (2) median

changes in last month’s price before and after 2019 (m2l , a scalar), and (3) median interquartile

range of price across weekday nights within the last month (m3l , a scalar). The choice of moments

directly follow my identification strategy above. The (one-step) GMM objective is

min
c,µ,θ

(m1l,m2l,m3l)
′
I14 (m1l,m2l,m3l) (16)

with identity weights I14. After estimation, I compute asymptotic standard errors from the variance-

covariance matrix.21

21The variance-covariance matrix is given by (ΓΓ′)−1 where Γ is the Jacobian matrix of all moments on all param-
eters (Hansen, 1982).
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4.6 Quarterly participation decisions

I construct a static entry/exit model to characterize listings’ decision to participate in the Airbnb

market. Recall that q jτt denotes the probability that listing j for date τ is rented by any customer

who arrives in month t (conditional on being available before t). The expected total profit for

quarter q is the sum of expected profit for each night τ in that quarter, which, in turn, integrates out

the likelihood that date τ is rented out in each of the 12 months when it is available,

Π jq = E

∑
τ∈q

12

∑
t=1

(
t−1

∏
ι=1

(
1−q jτι

))
q jτt︸ ︷︷ ︸

prob. rented in any of the 12 months

·
(

p jτt · (1− f )− c j
)︸ ︷︷ ︸

markup after platform fee

 . (17)

Given the quarterly profit,22 I estimate the fixed costs by imposing that the listing decides to

stay in the market (conditional on having entered the market) if it earns positive net expected profit:

Π jq−Fjq > 0. (18)

Here, fixed costs Fjq is a combination of the opportunity cost of participating in Airbnb (as opposed

to renting on other platforms, or going to the long-term rental market, or using the apartment for

oneself). I parameterize this cost as

Fjq = F̄l( j)+ψ1Ipost regulation +ψ2dist j +ψ3dist2j +ψ4ζ jq (19)

where F̄l( j) is segment l’s fixed cost. Ipost regulation is an indicator for the 2018 San Francisco

regulation, which imposes a mandatory license requirement with annual fee (and an application

22To estimate the profit for listings that do not currently operate on the market, one needs to infer the demand
intercept δ̂ jq had it operated in the market. For observed listing-quarters, I estimate

δ jq = δ
1
j +δ

2
q +∆δ jq

and project δ̂ jq = δ̂ 1
j + δ̂ 2

q . The R-squared of the above equation is 0.993. The projected δ ’s are only used to estimate
fixed costs.
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process). dist j characterizes the listing’s distance to Union Square (in miles) and proxies for the

higher land cost in downtown San Francisco (or higher forgone rent). ζ jq is a type-1 extreme value

error term, which implies a binary-logit choice probability for the participation decision. I jointly

estimate all parameters by maximum likelihood.

5 Estimation results

Demand estimates. Table 4 presents parameter estimates of consumer demand, omitting δ jq’s,

which are computed from the fixed point. I find that both segments are sensitive to price, with seg-

ment 2 (the segment that arrives later) being less price sensitive. The difference in price sensitivity

between segments is consistent with the myopic consumer assumption; if consumers were to wait

for discounts, late-adopters should be more price sensitive. I also find the residual from the control

function, η jτt , has a sizable coefficient, suggesting that prices are endogenous to demand shocks.

The average price elasticity in San Francisco is -2.51. This average elasticity is consistent with

Jeziorski and Michelidaki (2019), who use experimental variation to estimate the price coefficient

for Airbnb in San Francisco. This similarity gives face validity to the price instrument.

Further, the estimated day-of-week fixed effects suggest a clear weekend demand surge for

both segments. In addition, the month-of-the-year fixed effects reflect a more nuanced seasonality

structure. Spring is the high-demand season for San Francisco. Segment 1 demand peaks in late-

Spring (June) whereas segment 2 demand peaks in early-Spring (March). This nuanced seasonal-

demand structure is identified by the correlation between occupancy-rate level and booking timing:

For example, June listings are likely booked early, reflected in the high segment 1 demand for that

month (segment 1 comes earlier).

These arrival-process parameters can be graphically represented by Figure 6, where I plot the

implied segment-specific arrival rate by time-to-check in, day-of-the-week, and month-of-the-year.

I also find that the model predictions matches with the observed sales outcomes over all three

dimensions. These rich demand variations, over time and across different nights, will be important

37



Table 4: Demand parameter estimates
Segment 1 std err Segment 2 std err

log(price) -3.214 0.011 -2.695 0.008
#customers: baseline (last month) 1.000 2.549 0.027

%∆ by months to check-in -0.383 0.001 -1.553 0.005
%∆ on holidays 0.196 0.012 -0.043 0.020

%∆ February -0.204 0.007 0.508 0.007
%∆ March 0.091 0.007 0.784 0.008

%∆ May 0.203 0.006 0.364 0.009
%∆ June 0.534 0.006 0.230 0.010

%∆ August 0.310 0.006 -0.345 0.012
%∆ September 0.269 0.006 -0.123 0.011
%∆ November -0.227 0.006 -0.358 0.008
%∆ December -0.396 0.007 -0.359 0.008

%∆ Monday 0.002 0.005 -0.068 0.008
%∆ Tuesday -0.004 0.005 -0.034 0.008

%∆ Wednesday -0.004 0.005 0.036 0.008
%∆ Thursday 0.018 0.005 0.085 0.007

%∆ Friday 0.167 0.005 0.225 0.007
%∆ Saturday 0.165 0.005 0.247 0.007

scale of price residual (control fn) 2.714 0.009

Notes: Nonlinear parameters from the demand model. Implied δ jq’s are not reported in the table. Number of observations = 16,674,620 (33,354

listing-quarter × 91 check-in days × 12 months = 36,422,568, but only 16.7 million observations are when the listing is available). Log likelihood

at convergence = -3,503,185. Asymptotic standard errors computed from the inverse Hessian matrix.

38



0 2 4 6 8 10 12
0

500

1000

1500

2000

m
on

th
ly

 a
rr

iv
al

 r
at

e 
pe

r 
se

gm
en

t

segment 1
segment 2

0 2 4 6 8 10 12

months to check-in

0

0.1

0.2

0.3

0.4

0.5

pr
(b

oo
ke

d 
| a

va
ila

bl
e)

data
model fit

1 2 3 4 5 6 7
0

1000

2000

3000

4000

5000

to
ta

l #
cu

st
om

er
s 

pe
r 

se
gm

en
t

1 2 3 4 5 6 7

day of the week (1 = Monday)

0.6

0.61

0.62

0.63

0.64

0.65

oc
cu

pa
nc

y 
ra

te

0 2 4 6 8 10 12
0

1000

2000

3000

4000

5000

to
ta

l #
cu

st
om

er
s 

pe
r 

se
gm

en
t

0 2 4 6 8 10 12

month of the year

0.55

0.6

0.65

0.7

0.75

oc
cu

pa
nc

y 
ra

te

Figure 6: Customer arrival: model estimates and fit

Notes: Top panels: implied average monthly arrival rate for the two segments over time-until-check-in (left), and the total number of customers over

day-of-the-week (middle) and month-of-the-year (right). Right: empirical and model-implied booking rate (left), which is defined as the probability

of being booked in a given month conditional on availability, and occupancy rate (middle and right), which is defined as the probability of a given

night-over-stay ever being booked.

drivers of optimal prices – ones that a rational, frictionless sellers should set.

Marginal costs and fixed costs. Figure 7 summarizes the distribution of marginal and fixed

costs across listings. Recall that supply-side parameters are separately estimated for all 150 seg-

ments.

The average marginal cost is $60 to host guest(s) for a night. I find significant heterogeneity

in marginal costs across sellers, suggesting that different sellers might see the hassle of operating

on Airbnb differently. The median cost is $38, only 0.7% listings have negative costs, and the

interquartile range is [$24, $68]. This interquartile range of marginal costs is equivalent to 1.5 to

4 hours of the minimum wage ($16) in San Francisco (the city’s average hourly wage is $36 in

2019). These costs reflect the time to clean the property and communicate with guests, but might
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Figure 7: Distribution of marginal costs and fixed costs

Notes: Marginal distribution of nightly marginal costs and monthly fixed costs. Both distributions are winsorized at the 98th percentile.

also include depreciation of the property and other hassle costs. The marginal costs push prices

above the revenue-maximizing level, typically considered as a benchmark for Airbnb and hotels.

I also find the monthly fixed cost at $5,540 on average, with an inter-quartile range at [$4,240,

$6,510]. The 25th percentile is slightly higher than San Francisco’s monthly rent in 2018-2019

(at about $3,500),23 whereas the 75th percentile is much higher. Appendix Table 7 reports the

estimates for ψ’s, implying much lower fixed costs at locations further away from downtown: 3

miles away from Union Square, the average monthly fixed cost is about $3,340 lower. Accounting

for this decline in fixed costs from downtown to outskirts of the city, these fixed costs estimates

seem comparable to hosts’ opportunity costs to listing their apartment on Airbnb.

Cognitive constraints (the use of non-dynamic pricing strategies). Figure 8 summarizes the

distribution of listings’ propensity to use non-dynamic pricing (θ ) and price-setting costs (µ and

ρ). First, the left panel presents the distribution of θ j. 48% listings have θ j > 0.5 (and for most

of them, θ j → 1), meaning that they can set dynamic prices if price-setting costs are zero. The

remaining half are cognitively constrained and set non-dynamic prices.

23Source: https://sf.curbed.com/2019/10/2/20895578/san-francisco-median-rents-market-census-september-2019.
Extracted in May 2021.
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Figure 8: Distribution price-friction parameters

Notes: Marginal distribution of demand intercept (quality), marginal costs, probability of changing prices, fraction of sellers using dynamic pricing

strategies, fraction using non-uniform pricing strategies, and quarterly fixed costs.

The middle panel presents the distribution of µ j —the listing’s probability of adjusting prices

in each month— for the set of listings with θ j > 0.5. µ j is clearly bi-modal. 43% of listings

always adjust prices. 31% listings never adjust prices before the last-minute discount feature was

available (and start using the feature after it was introduced). The remaining 26% have some price-

adjustment costs such that they only get to change prices in some months (and most of them change

prices rarely). Listings with price-adjustment costs will benefit from platform’s effort that makes

dynamic pricing less costly.

The right panel characterizes the distribution of ρ j—the number of price points—for those who

set non-dynamic prices. The average of ρ j is 5.3. 74% of listings can set 5 or below price points

in expectation. The low ρ j suggests that the existing price-setting interface also lowers the degree

of flexibility across nights. As a result, most of the listings using non-dynamic prices might also

benefit from a more flexible price-setting interface.

Correlation with observed characteristics. I project each estimated supply-side parameters on

observed characteristics to examine what explains differences in pricing strategies (and partici-

pation decisions). For example, I estimate a linear regression of marginal costs (c j) on a vector

of listing and seller characteristics, controlling for time and neighborhood fixed effects. Table 5
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Table 5: Decomposition of supply-side primitives on listing and seller characteristics
c j ($) se θ j (%) se µ j (%) se ρ j (nr) se

intercept 92.3 5.6 38.7 3.0 52.7 3.7 9.5 1.0
log(nr listing) 5.7 0.5 8.2 0.3 -0.5 0.3 1.2 0.1
host is superhost -0.4 0.9 -2.0 0.5 2.6 0.6 0.5 0.2
respond in 1 day -8.9 1.1 1.7 0.6 3.1 0.7 0.9 0.2
instant booking -6.4 0.9 -1.6 0.5 -1.1 0.6 -0.1 0.2
flexible cancellation 10.3 1.0 -2.7 0.6 -5.1 0.7 -0.9 0.2

Notes: Regression results of estimated supply parameters on observed listing and seller characteristics. Additional controls not reported in the table

are: fully saturated listing type (e.g. entire apartment) × max number of guests × property type (e.g. townhouse) fixed effects, amenity indicators

(TV, internet, parking, washer/dryer, breakfast, allow pets), and length of the listing’s descriptions.

presents these findings.

Controlling for listing characteristics, the biggest difference between single- and multi-listing

sellers is on the extent of cognitive constraints, or whether the seller can set dynamic prices. One

standard deviation in the number of listings explains 0.23 standard deviation of θ j. In addition,

one standard deviation in the number of listings explains 0.07 standard deviation of marginal costs,

0.11 standard deviation of ρ j, and −0.01 standard deviation of µ j. This result echoes the earlier

finding that multi-listing sellers set sophisticated pricing strategies.

6 Counterfactual

I start by comparing equilibrium outcomes under the factual scenario (referred to as the “base-

line”), where sellers set prices subject to frictions, to the frictionless market outcome where all

frictions are eliminated (“first-best”). Whereas the first-best scenario is unattainable in practice,

its simulation shows the upper bound of the potential gains from alleviating seller-side frictions.

Then, I examine three platform remedies. The first is where the platform enforces a revenue-

maximizing pricing algorithm. Such an algorithm approximates the “Smart Pricing” algorithm (Ye

et al., 2018). The second scenario involves improving the pricing interface, which—in perhaps

an overly optimistic scenario—eliminates sellers’ price-adjustment costs but does not affect their
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cognitive constraints. The third scenario involves a more fundamental redesign of the platform:

The platform provides a flexible price-adjustment function to sellers, and based on these functions,

each seller sets the base price and leverages the platform’s price-adjustment function. In this sce-

nario, the platform leverages its informational and technological advantage, provides assistance

to sellers, but does not take away sellers’ rights to set higher-than-revenue-maximizing prices. I

compare profits and consumer surplus across the five scenarios. All calculations are based on the

period from May 2015 to December 2017, the sample period before the San Francisco regulation.

Counterfactual 0: First-best. The first two columns of Table 6 compare the baseline to the

first-best. First-best prices are set where all pricing frictions are eliminated (i.e., µ j = 1, θ j = 1,

and ρ j is irrelevant in this case), and as a result, prices can target night-of-stay level demand

differences and thus are more dispersed. One standard deviation of the price (within listing, across

nights) increases from 4% in the baseline to 6% in the first-best for the median listing. Also, first-

best prices generally decrease over time as the option value for waiting for additional customers

dwindles. I show that the percent last-month discount increases to 30% from 2% (i.e., almost

completely sticky prices) for the median listing. These two aspects lead to lower last-month prices

and higher occupancy rates.

I further explore who gains and who loses in the first-best. The median seller gains as net profits

increase from $2,350 to $2,440 per quarter, or by 3.8%. Table 7 further presents the distribution

of within-seller profit changes. 1% sellers lose because they do not face significant frictions but

their competitors can now price more flexibly (and often lower). Still, most sellers gain from the

first best, and 5/95 percentiles of the profit gain is [0%, 15%]. Other than sellers, consumers also

gain as their surplus (measured in utils) increases by 14%. The platform gains little—its profit

increases by 2.5%. Almost all market participants gain from eliminating all frictions. The frictions

significantly impact consumers and some sellers. Yet, around half the sellers and the platform are

not affected much by the frictions (below 3% loss in surplus). The platform might have limited

incentives to spend significant efforts to eliminate the frictions.
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Table 6: Counterfactuals: median-seller outcomes, platform profit and consumer surplus
baseline first best revenue-max. ideal interface platform-assist

last-month price 133.66 120.49 99.27 130.26 118.49
price dispersion across nights 0.04 0.06 0.09 0.05 0.06
last-month discount -0.02 -0.30 -0.38 -0.10 -0.29
occupancy rate 0.73 0.77 0.90 0.74 0.79
seller quarterly profit ($k) 2.35 2.44 2.16 2.38 2.42
seller participation rate 1.00 1.00 0.92 1.00 1.00
total platform revenue ($m) 2.36 2.42 2.40 2.38 2.42
average consumer surplus (util) 4.11 4.69 6.03 4.23 4.84

Notes: This table summarizes counterfactual market outcomes in the baseline, first-best (i.e., sellers set prices without frictions), and under the two

platform remedies. All seller-level outcome (last-month price, price dispersion, last-month discount, occupancy rate, and profits) are at the median.

Price dispersion is the standard deviation of log(price) across nights. Last-month discount is the ratio between last-month price and first-month

price, minus one. Profit is the net quarterly profit after substacting fixed costs.

Table 7: Counterfactuals: within-seller profit changes relative to the baseline
first best revenue-max. ideal interface platform-assist

fraction who earn negative profit 0.00 0.08 0.00 0.00
– who lose relative to baseline 0.01 0.56 0.00 0.09
– who gain relative to baseline 0.69 0.31 0.40 0.62
profit increase relative to baseline: 5 % -0.00 -1.00 -0.00 -0.02
– 25% 0.00 -0.19 -0.00 -0.00
– median 0.03 -0.02 0.01 0.02
– 75% 0.05 0.02 0.02 0.05
– 95% 0.15 0.08 0.06 0.14

Notes: This table summarizes within-seller changes in profit in the counterfactual scenarios (relative to the baseline scenario). Fraction who lose

(gain) profit is defined as the fraction of sellers who earn less than 99% profit (more than 101% profit) relative to the baseline, where I put a 1%

buffer to filter out sellers who are close to indifferent.
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Counterfactual 1: Revenue-maximizing algorithm. The platform has argued that “smart pric-

ing,” an algorithm that maximizes the revenue of each seller (Ye et al., 2018), will help eliminate

pricing frictions. Maximizing seller revenue is in line with the platform’s incentive because the

platform takes an ad valorem fee (fixed percent on sellers’ revenue). Yet, maximizing revenue

might not be aligned with sellers’ incentives, given that many of them have non-zero marginal

costs. I now examine what happens if the platform enforces a seller-revenue-maximizing algo-

rithm upon all sellers.24

Column 3 of Table 6 shows that, because revenue-maximizing prices do not factor in seller

marginal costs, they are 26% below the baseline prices and 18% below the first-best prices. As a

result, I find higher price dispersion across nights and heavier last-month discounts than the first-

best. Occupancy rate jumps up to 90%. However, these changes are not aligned with sellers’

interests. The median seller now earns only $2,160 per quarter, down by 11% from the first-best

(and 8% from the baseline). Further, Table 7 shows that 8% sellers now earn negative profits and

will exit the platform, 56% sellers are worse-off compared to the baseline, and 25% sellers’ profits

decrease by 19% or worse.

However, consumers and the platform gain from these changes. Platform profit is 1.7% above

the baseline and 0.9% below the first-best, suggesting that, from the platform’s perspective, a

simple revenue-maximizing algorithm (that is easy to implement) could bring its outcome towards

the first-best. Consumers surplus is up by 47% from the baseline and 29% from the first-best,

because of the much lower prices and higher occupancy rate (note that these gains are achieved

despite the lower variety, because of seller exit).

These equilibrium outcome predictions—decrease in prices, increase in occupancy rate, and

the higher the seller exit rate—are highly consistent with a recent paper by Filippas et al. (2021).

Filippas et al. work with a rental-car platform to experimentally impose a revenue-driven, central-

ized pricing algorithm on a random set of sellers (and in some cases, they give sellers a limited

24This scenario assumes that each seller solves for the frictionless revenue-maximzing prices. It is my interpretation
of a (global) revenue-maximizing algorithm. But it does not necessarily use the same demand model as in Ye et al.
(2018).
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degree of control over prices). They find that the algorithm decreases prices, increases utilization

rate, and creates a high amount of seller exit.25 The platform in Filippas et al.’s later changed the

pricing rule to centralized pricing (but giving sellers some room of price adjustments).

My counterfactual findings, as well as the connection to Filippas et al.’s observed market out-

comes, highlight an important conflict of interest between the platform and its sellers. Whereas

the platform would like to gain full control over pricing and eliminate pricing frictions through

automation, doing so is detrimental to sellers (but will benefit consumers due to the low prices). In

reality, Airbnb might not enforce such an algorithm in fear of seller backlash, and “Smart Pricing,”

introduced in 2015, might need further tuning. Nevertheless, the platform’s preference for using

this algorithm is consistent with its advocating for the algorithm over alternative pricing tools.

Counterfactual 2: A flexible price-setting interface. If sellers maintain control of pricing,

can the platform do anything to alleviate pricing frictions? The 2019 interface change suggests

some room for improvement from the pricing interface. I simulate the counterfactual impact if the

platform introduces a fully-flexible dynamic pricing interface and a flexible interface across nights.

In perhaps an overly optimistic scenario, this “ideal” interface eliminates all price-adjustment costs,

setting µ j = 1 and ρ j = 31, for all j. Meanwhile, this scenario does not affect sellers cognitive

constraints, keeping θ j’s at their estimates.

The last columns of Table 6 and 7 show that the median last-month price discounts are much

steeper than in the baseline, whereas price dispersions remain the same. The median seller profit is

now $2,380 per quarter, up by 1.3% from the baseline—only a third of the total potential gain from

the first-best. Likewise, the platform gains a similar amount as the mandatory revenue-maximizing

algorithm case, and consumer surplus is only up by 2.9%, far from the first-best.

The result shows that even in such an ideal scenario, the scope for improving pricing through

reducing the price-adjustment costs is limited. This result is consistent with the estimates that

an important source of frictions is sellers’ cognitive constraints. One would imagine that in re-

25Exit rates are as high as 30% in their experiment. Some exits might be driven by sellers agonized by the platform’s
unilaterally changing the pricing rule. The authors acknowledge this possibility.
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ality, such a complex price-setting interface might have backfired: sellers who are cognitively

constrained might not react positively to the much more complicated pricing interface.

Counterfactual 3: Platfom-assisted pricing. In a different counterfactual scenario, I investi-

gate whether the platform can leverage its advantage in information and technology to assist seller

pricing. The platform has an information advantage over sellers because it has all the booking data

and can estimate demand. The platform also has an advantage in pricing technology because it can

implement any pricing rules or algorithms (and thus design how the market works). Although the

current “Smart Pricing” algorithm tries to leverage these advantages, the platform’s disadvantage is

(1) not knowing sellers’ marginal costs and (2) unable to commit to seller-incentive-aligned price

levels (due to misaligned incentives). I now entertain a scenario where the platform commits to not

set the base price level, but still leverages its informational and technological advantages to assist

seller pricing.

Specifically, the platform redesigns pricing into two stages. In the first stage, the platform

presents a price-adjustment function, amlτt , for market m, listing type l ( j) = 1, ...,150, night-of-

the-quarter τ , and time t (with time-to-checkin τ− t). The platform announces that the consumer

price will be

p jτt = p̄ jq(t)×
(
1+aml( j)τt

)
, (20)

and that sellers only set quarterly price p̄ jq(t) — which is at the same level of uniform pricing in

the model. In the second stage, sellers observe the now-committed amlτt and set p̄ jq(t).26

How would the new equilibrium look like, and how far are we from the first best? The last

column of Table 6 and 7 present the results. First, I find that the median price level is close to (but

a bit lower than) the first-best, and that the degree of price adjustments over time, price dispersion,

and occupancy rate are almost identical to the first-best. On the aggregate, the platform’s new price

26To implement this counterfactual, for each j-τ-t, I take the ratio between the first-best prices over the counterfac-
tual uniform (and time-invariant) prices to compute ã jτt . Then, I average these a’s for each market m, time t, and for
each type l to get amlτt . One might imagine that amlτt ’s can be crude if the groups l are crude. One might also imagine
that amlτt ’s can be further optimized by the platform. For this counterfactual exercise, I use the crude (and potentially
suboptimal) amlτt ’s to illustrate that improvements can still be gained. Letting the platform strategically choose a’s is
beyond the paper, given the enormous computation burden.
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function mimick’s that of the first-best and forges the “shape” of equilibrium prices. As a result

of this similarity, consumer surplus is now 3.2% above the first-best and is much higher than the

baseline scenario (due to the slightly lower prices). Sellers, on the other hand, mostly gain (or at

least not lose) from this change. The median seller profit is 3.0% higher than the baseline. 62%

of sellers gain from this cahnge, and 9% sellers lose. Virtually no seller chooses to exit. All in all,

the crude platform-assisted pricing scheme helps consumers and most sellers, and it also simplifies

seller decision-making and loads most of the decision burden to the platform.

7 Summary

Pricing in a complex environment is difficult for individual sellers. While providing aid to seller

pricing, the platform might have incentives to steer prices towards its objective. This paper shows

that seller-pricing frictions —which I refer to as prices’ lack of response to market conditions— are

prevalent on Airbnb. I demonstrate that two mechanisms jointly drive the frictions: sellers’ price-

setting costs and cognitive constraints. I also estimate a tailored structural equilibrium model,

which recovers rich consumer arrival processes and demand, sellers’ pricing frictions, and their

opportunity costs of time.

I demonstrate that the recovered pricing frictions lead to a 14% consumer welfare loss and

heterogeneous profit losses for sellers—for example, the profit loss’ 5–95 percentile range is [0%,

15%]. Given the loss, are there any ways that the platform can ameliorate the frictions? Based on

the estimates, a flexible interface will unlikely help because significant frictions come from sellers’

cognitive constraints (instead of interface-driven menu costs). Enforcing a revenue-maximizing

algorithm will also see limited return because such an algorithm does not internalize sellers’ op-

portunity costs of time. However, I show that a simple redesign will eliminate almost all frictions,

where the platform sets price variation but commits to give sellers the final decision right to de-

termine the price levels. Based on this analysis, ameliorating the pricing frictions is feasible in

practice.
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Appendix

A Interpolation of prices and occupancy
This section provides more details about the interpolation of price and occupancy outcomes.

Prices. I do not observe the price of the nights that are booked. Because listings are sampled once
a month, the last price observation might be a few weeks before the actual booking date. However,
fortunately, most prices do not vary much over time or are characterized by simple price-policy
functions, making it feasible to interpolate the missing prices.

In the raw data (at the listing-night-sampling date level), 13.5% price observations are missing.
I start with the set of listings which charge uniform prices, i.e. the same price across all nights
for a given sampling date. For these listings (given sampling date), if I find that observed prices
are uniform, I interpolate all missing prices using this uniform price.27 This step fills in 3.9%
observations, which is 29% of all missing prices and is consistent with Figure 3.

Next, I find listings-sampling date observations where all nights’ prices can be characterized
by one baseline plus one weekend surcharge. This is the case for 8% of missing prices, in which
case I fill them in using the observed, stylized pricing policy. Similarly, I also fill in prices that
vary by calendar month of the night plus a weekend surcharge (11% missing prices) and weekly
prices plus a weekend surcharge (2% missing prices). At this point, half of the missing prices have
been interpolated).

Further, I examine intertemporal variation in prices for the given night.28 Specifically, I ex-
amine nights for which prices do not vary at all. I find that an additional 15% of missing prices
fall into this category, in which case I interpolate the price of the night by the constant, observed
prices.

By this step, 35% of the original missing-price data are still missing. I now take a stronger
stance and assume that missing prices is equal to the last-observed price (i.e. price last observed
before the check-in is occupied). This step fills in 19% missing prices, or 2.7% of all price data.

Occupancy. Recall that occupancy could be under-measured because some nights are last-observed
weeks before the stay date, during which time it might be booked by a late-arrival customer. I
leverage the fact that some nights are last-observed very close to the stay date –in which case there
should be little truncation problem– and interpolate the occupancy event for dates that are (1) last
observed far from the stay date, and (2) not booked when last observed. To do so, I assume that
the expected occupancy rate is the same up to observed characteristics of the date, such as week-
day or month of the year (seasonality). However, observed occupancy is different because of the
difference in truncation. Given this assumption, I estimate a simple linear regression of binary
(eventual) occupancy for listing j date τ , as a function of the degree of truncation (the number of
days between the last observation and τ) interacted with month of the year and weekday of τ ,

occupancy jτ = f
(
truncation jτ ,τ

)
+ ε jτ (21)

27In practice, I allow for a 0.5% standard deviation in unexplained price differences, to accommodate the possibility
of a scraper error. This threshold is below $1 at the median price so can be safely ignored.

28I do not prioritize this dimension because, intertemporally, prices are not sampled at high frequency.
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which I then parameterize by quadratic specifications of truncation jτ interacted with fully saturated
set of fixed effects.

The estimated f̂ predicts, given the night τ , the expected occupancy if truncation becomes zero.
Denote this difference ∆occupancy jτ . I find that if the night is truncated by two weeks, occupancy
rate is predicted to be 5 percentage points higher, or 9% relative to the observed (truncated) occu-
pancy rate at 0.56. In the extreme, if the night is truncated by 30 days, occupancy rate is predicted
to be 11 percentage points higher. Across all dates, occupancy rate would have been 0.69 if there
were no truncation.

Lastly, for nights that I do not see occupancy, I sample binary outcomes from ∆occupancy jτ ,
which is interpreted as “additional occupancy events” were there no truncation. I interpolate the
cases where ∆occupancy jτ is one. The interpolation finds 765,996 occupancy events, 16% over a
baseline of 4,680,931 cases.

B Uniform-pricing instruments: detail
To identify the price coefficient, I leverage the predominant uniform pricing and construct an ex-
ogenous price shifter based on prices of other, unrelated nights. Nights that are unrelated to the
focal date have uncorrelated demand shocks, but are often set the same price. This section demon-
strates the strength of the instrument and performs several robustness checks.

I estimate
log
(
price jτt

)
= β

1 log
( ¯price j,−q,t−1

)
+δ

1
jq +Xτγ

1 +u jτt (22)

where Xτ are characteristics of the night, including weekend, seasonality (quadratic specification of
week-of-the-year), and holiday indicators, and δ 1

jq are listing-quarter fixed effects. This is exactly
the same set of controls used in structural demand estimation. The excluded variable (“instru-
ment”) is log price of nights in other quarters observed at the previous month, log

( ¯price j,−q,t−1
)
.

Given the first stage, I estimate the second stage of the IV regression

sale jτt = α
2 ˆlog

(
price jτt

)
+δ

2
jq +Xτγ

2 + ε jτt (23)

where sale jτt is an indicator of whether one customer occupies night τ in month t.
I find that, given the set of controls, log price of other nights is still strongly correlated with the

focal date’s price. t-statistics are on the order of 100, implying that the F-statistic of the excluded
variable is on the order of 10,000. I find that the second stage linear-log price coefficient is -0.467,
implying an average price elasticity of -2.4 at the mean of the dependent variable at 0.217. This
exercise confirms the source of identification in the structural model and that the driver of price
variation is strong.

I further perform two robustness checks and one placebo test. First, one might be concerned
that only some listings charge uniform prices and thus the IV recovers the local average price
coefficient for these uniform-pricing listings, who might systematically differ from others. To
address this concern, I estimate the same first and second stage regressions using a sub-sample of
listings with high degrees of price variation. I take the top quartile of listings with the highest price
variation (defined as the average inter-quartile range of prices across nights). Column 2 shows
the results from this subset, I still find strong correlation in prices between nights across quarters,
and find virtually the same price coefficient from the IV estimate. This result suggests that the
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across-check-in-date price variation leveraged by this IV is widely applied to most listings and
thus recovers the average price effect of a representative listing.

Second, one might be concerned that the correlation across nights might come from demand
rather than supply. I already focus on nights that are in different quarters of the focal date, po-
tentially avoiding correlated demand from unobserved holidays and local events (such as a music
festival) that introduce correlated demand shocks across consecutive nights. In addition, I perform
a robustness check including nearby nights and show that the results are robust. Column 3 of the
table shows the result using log average price of all nights (including the focal date). I find that
whereas the first stage is a little stronger, potentially capturing the fact that prices of nearby dates
have higher correlation, the second stage results are virtually unchanged. This result suggests that
one should not worry about potential demand correlation between nearby nights. One plausible
explanation is that these potential correlated demand shocks are weak and thus are averaged out in
calculating the mean price across all nights.

Finally, one might further wonder how the uniform-pricing IV performs compared to using
lagged prices as IV, which is often thought of as non-ideal but is still used in past and contemporary
literature. In this case, a concern for using lagged price as IV is the presence of check-in-date-
specific demand shocks. Column 4 shows the result of using lagged price of the focal night as
IV for the current price. While this IV is very strong, the second stage estimate is only 1/3 of the
preferred specification, implying a price elasticity of about -0.8. This placebo check showcases
the importance of unobserved demand shifters on the night level, which is corrected for by the
uniform-pricing IV but not the lagged price IV.

C Additional descriptive evidence

C.1 Multi-listing sellers are more responsive to demand shifters
Given that multi-listing sellers set more flexible prices, a natural follow-up question arises: Can
their prices capture demand shifters better, or is it that they face different demand in the first
place? To speak to this question, I collapse data to the level of listing ( j) and nights (τ) and
regress occupancy rate on salient characteristics of the night, such as the summer dummy (but also
weekend and holidays), and the interaction between that and the log number of listings.

occupancy jτ =α log
(
price jτ

)
+β1 log

(
#listing jτ

)
+β2summerτ +β3 log

(
#listing jτ

)
·summerτ +δ j+λy(τ)+ε jτ .

(24)
I also control for the price, listing fixed effects, and calendar year fixed effects. Equation (24)
examines whether the occupancy rate is higher during the summer and whether this relationship
differs across sellers with different scale.29 The main parameter of interest is whether multi-listing
sellers listing face the same summer-demand shifter, i.e., to test against β3 = 0. I also estimate a
similar regression with log price on the dependent variable, to test whether multi-listing sellers set

29As an aside, the capacity-constrained nature of the market makes it that optimal prices depends on the level of
the occupancy rate (as opposed to only depending on the price elasticity). Holding elasticity fixed, the higher the
occupancy rate, the more likely the listing will be rented out early at a given price, and the higher the optimal price
should be.
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Appendix Table 1: Uniform-pricing instruments and alternative specifications
Panel A: first stage

Dependent variable:

log(price)

(1) (2) (3) (4)

log(avg lag price, diff quarter) 0.150∗∗∗ 0.114∗∗∗

(0.001) (0.003)

log(avg lag price, all dates) 0.222∗∗∗

(0.001)

log(lag price, same date) 0.560∗∗∗

(0.0005)

weekend 0.028∗∗∗ 0.100∗∗∗ 0.028∗∗∗ 0.013∗∗∗

(0.0001) (0.001) (0.0001) (0.0001)

holiday −0.0004 −0.007∗∗∗ −0.0005 −0.0004
(0.0003) (0.001) (0.0003) (0.0003)

days to checkin 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.00001) (0.00004) (0.00001) (0.00001)

days to checkin squared −0.00001∗∗∗ −0.00001∗∗∗ −0.00001∗∗∗ −0.00001∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000)

listing × checkin quarter FE yes yes yes yes
week, weekend, holiday FE yes yes yes yes
Observations 3,601,194 498,281 3,601,194 3,471,476
R2 0.970 0.909 0.970 0.979

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Panel B: second stage

Dependent variable:

occupancy

(1) (2) (3) (4)

log(price) −0.467∗∗∗ −0.510∗∗∗ −0.447∗∗∗ −0.137∗∗∗

(0.017) (0.048) (0.012) (0.003)

weekend 0.022∗∗∗ 0.061∗∗∗ 0.021∗∗∗ 0.013∗∗∗

(0.001) (0.005) (0.001) (0.0004)

holiday −0.005∗∗∗ −0.012∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.001) (0.003) (0.001) (0.001)

days to checkin −0.010∗∗∗ −0.010∗∗∗ −0.010∗∗∗ −0.010∗∗∗

(0.00004) (0.0001) (0.00003) (0.00003)

days to checkin squared 0.00005∗∗∗ 0.0001∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000)

listing × checkin quarter FE yes yes yes yes
week, weekend, holiday FE yes yes yes yes
Observations 3,601,194 498,281 3,601,194 3,471,476
R2 0.275 0.223 0.276 0.289

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: first and second stage of IV estimates of sales (probability that one consumer rents the listing in a given month) on price, where the price

is instrumented by the average lagged price of nights that are in different quarters of the focal date (“uniform-pricing IV”). Alternative IVs are

compared.
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Appendix Table 2: Price dispersion across weekends, summer, and holidays

Dependent variable:

occupancy log(price) occupancy log(price) occupancy log(price) occupancy log(price)

(1) (2) (3) (4) (5) (6) (7) (8)

log(listing) 0.010∗∗∗ 0.014∗∗∗ 0.009∗∗∗ 0.020∗∗∗ 0.009∗∗∗ 0.024∗∗∗ 0.010∗∗∗ 0.011∗∗∗

(0.001) (0.0005) (0.001) (0.0005) (0.001) (0.0005) (0.001) (0.0005)

log(price) −0.104∗∗∗ −0.104∗∗∗ −0.097∗∗∗ −0.111∗∗∗

(0.002) (0.002) (0.002) (0.002)

summer quarter 0.033∗∗∗ 0.027∗∗∗ 0.033∗∗∗ 0.027∗∗∗

(0.001) (0.0003) (0.001) (0.0003)

summer × log(listing) −0.008∗∗∗ 0.023∗∗∗ −0.008∗∗∗ 0.023∗∗∗

(0.001) (0.0003) (0.001) (0.0003)

weekend 0.021∗∗∗ 0.028∗∗∗ 0.021∗∗∗ 0.028∗∗∗

(0.001) (0.0003) (0.001) (0.0003)

weekend × log(listing) 0.001 0.013∗∗∗ 0.001 0.013∗∗∗

(0.001) (0.0002) (0.001) (0.0002)

holiday −0.023∗∗∗ −0.007∗∗∗ −0.017∗∗∗ −0.001∗

(0.001) (0.001) (0.001) (0.001)

holiday × log(listing) 0.001 −0.013∗∗∗ −0.0005 −0.010∗∗∗

(0.001) (0.0005) (0.001) (0.0005)

listing FE yes yes yes yes yes yes yes yes
year FE yes yes yes yes yes yes yes yes
Observations 2,347,006 2,347,006 2,347,006 2,347,006 2,347,006 2,347,006 2,347,006 2,347,006
R2 0.340 0.940 0.340 0.940 0.339 0.939 0.340 0.941

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Estimation results of Equation (24).

different summer price premiums than single-listing sellers.30

Table 2 finds that, conditional on price, occupancy rate is 3 percentage points higher during the
summer, 2 percentage points higher during the weekend, and 2 percentage points lower during a
public holiday.31 In addition, multi-listing sellers do not face different demand shifters, as β3 is
indistinguishable from zero (except for summer, in which case multi-listing hosts face a slightly
smaller demand increase). Nevertheless, I reproduce the previous finding that multi-listing sell-
ers set higher prices for the summer and weekends, and lower prices for holidays. These results
suggest that multi-listing sellers face the same demand but can set different prices to capture de-
mand. Hence, these results support the general picture that persistent seller differences create large
degrees of heterogeneity in pricing strategies.

30This exercise is related to Leisten (2020), who examines hotels’ ability to price in college football games (a
“non-salient” demand shifter) relative to their ability to price in salient shifters, and Huang et al. (2020), who examine
supermarket’s ability to set prices that capture product-level idiosyncratic demand.

31The lower demand during holidays can potentially be explained by higher supply during holidays, reducing the
residual demand for each listing.
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Appendix Table 3: Within-seller effects of scale and experience

Dependent variable:

log(end price) std of %prices (checkin d.) %last-month discount %summer premium occupancy

(1) (2) (3) (4) (5)

1 year expr 0.012∗ −0.001 0.006 0.016∗∗∗ −0.022∗∗

(0.006) (0.004) (0.005) (0.005) (0.010)

2 years 0.016 −0.003 −0.003 0.008 −0.029∗∗

(0.011) (0.005) (0.009) (0.006) (0.015)

3 years 0.015 −0.002 0.001 0.010 −0.037∗

(0.015) (0.006) (0.012) (0.007) (0.019)

4+ years 0.018 −0.007 0.001 0.005 −0.047∗∗

(0.018) (0.007) (0.014) (0.009) (0.023)

2 listings 0.011∗ 0.0001 0.008∗ −0.006∗∗ −0.025∗∗∗

(0.006) (0.003) (0.005) (0.003) (0.008)

3-5 listings 0.009 0.001 0.005 0.001 −0.039∗∗∗

(0.010) (0.004) (0.008) (0.004) (0.012)

6+ listings 0.006 0.021∗∗∗ −0.003 −0.0002 −0.015
(0.020) (0.008) (0.015) (0.009) (0.024)

host FE yes yes yes yes yes
loc-time FE yes yes yes yes yes
loc-room type FE yes yes yes yes yes
amenities FE yes yes yes yes yes
Observations 70,612 71,491 70,612 70,521 69,854
R2 0.975 0.747 0.751 0.728 0.851

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Notes: Regression similar to Table 2, but with seller fixed effects and years of experience as covariates.

C.2 No learning
I present additional evidence, testing whether the main result in Section 3.2 is driven by within-
seller variation in scale and experience. The hypothesis is that sellers might develop experience
in setting prices and might increase price flexibility/sophistication over time. Appendix Table 3
confirms the earlier finding (Table 2) that almost most differences in price variability between
sellers of different scale have vanished once I control for seller fixed effects. In addition, the table
also shows that more experienced sellers price higher, do not price less uniformly across nights,
and their prices lower less (not more) over time. These results is consistent with more experienced
sellers face higher demand due to reputation effects (Hollenbeck, 2018; Fradkin et al., 2018), and
do not explain the between-seller difference in the degree of sophistication in pricing.
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D Model details

D.1 Demand model detail: aggregation and fixed points
Aggregation. A given day τ of a listing j is listed on the market for at most 12 months (t). In
each month in expectation, λ k

τt customers of each type k = 1,2 will come to examine this listing
and each customer has sk

i jτ probability of booking it. Define S jτt = 1 if one of the consumers
books listing j, night τ in period t, and A jtτ = 1 if listing j night τ is available at the beginning of
period t. If consumers choose independently,32 Pan (2019) derives, under a model of homogeneous
consumers, the probability that no customers from a given segment k books the listing if that night
is available:

Pr
(
S jτt = 0|A jτt = 1,k

)
= exp

(
−sk

i jτ ·λ k
τt

)
. (25)

Based on this result, the probability that no customer from either segment books the listing is

Pr
(
S jτt = 0|A jtτ = 1

)
= Pr

(
S jτt = 0|A jτt = 1,k = 1

)
·Pr
(
S jτt = 0|A jτt = 1,k = 2

)
= exp

(
−s1

i jτ ·λ 1
τt− s2

i jτ ·λ 2
τt
)
. (26)

Next, one can write down the expected occupancy rate (i.e., whether night τ of listing j is ever
booked) as

E
[
occupancy jτ

]
= Pr

(
S jτ1 = 1

)
+Pr

(
S jτ2 = 1|A jτ2 = 1

)
·Pr
(
S jτ1 = 0

)
+ ...

+Pr
(
S jτt = 1

)
·∏

ι<t
Pr
(
S jτι = 0|A jτι = 1

)
+ ...

= Pr
(
S jτ1 = 1

)
+Pr

(
S jτ2 = 1|A jτ2 = 1

)
·Pr
(
A jτ2 = 1

)
+

Pr
(
S jτ3 = 1|A jτ3 = 1

)
·Pr
(
A jτ3 = 1

)
+ ... (27)

that is, the occupancy rate is the sum of probability that the listing is booked in each period, which
is in turn, the probability of being available by the start of a period and being booked in the same
period.

We now discuss the invertibility of this demand system, so as to solve for δ jq given realized
quantity, following BLP and Berry, Ghandi and Haile (2013). Equation (27) outlines the expecta-
tion of occupancy rate conditional on a night being available at the beginning. One can write down
the sample analog of this expectation,

1
|q| ∑

τ∈q
occupancy jτ =

1
|q| ∑

τ∈q

(
Pr
(
S jτ1 = 1

)
+Pr

(
S jτ2 = 1|A jτ2 = 1

)
·A jτ2 + ...

)
(28)

which gives the fixed point equation (8) in Section 4.1.

Nested fixed point algorithm and estimation. I estimate demand using data each listing j and
for each available night τ , over all the months t of observations during which the listing is available
(up to 12 months). The probability of the listing being booked in month τ given availability at the

32I assume away variations in the choice set within the period t.
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beginning of that month, is Pr
(
S jτt = 1|A jτt = 1

)
given by Equation (26). Likelihood function is

simply
likelihood = ∏

j,τ,t
Pr
(
S jτt = 1|A jτt = 1

)S jτt ·Pr
(
S jτt = 0|A jτt = 1

)1−S jτt . (29)

To compute the objective function at each set of trial parameters (α,σ ,γ), we iterate Equation
(8) and solve for all δ jq’s as a function of these parameters, then use the δ ’s to compute the likeli-
hood. The outer loop then finds the set of parameters that maximizes the log likelihood. The fixed
point computation is costly but the compute time concentrates on many fixed-point iterations of
Equations (5)-(8), with mostly the same data (but different parameter values). These computation
tasks can be vastly accelerated in a graphical-processing unit (GPU).

D.2 Demand model detail: identification of arrival rates from the demand
intercept

A challenge is to separate δ jq(τ) from λ k
mτt , or to separate customer arrival rate from preferences in

explaining a given that I only observe the occupancy rate. One needs normalizations. Specifically,
I normalize γ1

m0 = 1000 for zipcode 94110 (the largest market in terms of total Airbnb rentals).
That is, for segment 1, I assume 1000 customers will arrive in the last month right before the
stay date (if the day is not a holiday or weekend, and on January first when the week-of-the-year
effect is zero) in this particular market. For every other zipcode, I assume segment 1’s last-month
arrival rate is proportional to that of 94110’s, based on the total number of observed Airbnb rentals.
Finally, I assume, for segment 2, λ 2

t,τ = 0 for τ ≤ 4. That is, there are no segment 2 customers in
before eight months to check-in. This normalization should separate the baseline demand intercept
from the customer arrival rate.

Further, recall that arrival is heterogeneous, and so are some utility parameters such as the
price intercept. Separating the heterogeneous preferences and arrival rates further relies on the
following arguments. First, the distribution of timing of when listings are booked identifies γk

1
given the basaeline γk

0m. Second, the size of segment 2 is identified by changes in the sensitivity
to price, weekend, and holiday. If the price sensitivity changes very little, then one rationalizes
the data mostly by segment 1. However, if the average price sensitivity changes by a lot, one
would rationalize the fraction of segment 2 (i.e. γ2

0m/γ1
0m), together with the differences in the

price sensitivity (i.e. α2−α1), by the empirical pattern of how price sensitivity changes over time.

D.3 Supply: Optimal dynamic pricing with probablistic inaction
Denote the probability of a sale for listing-stay jτ in period t (i.e. the probability that one of the
customers book listing j for night τ , during month t) as

q jτt := 1−Pr
(
S jτt = 0|A jτt = 1

)
= 1− exp

(
−s0

i jt ·λ 0
mτt− s1

i jt ·λ 1
mτt
)
, (30)
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and the individual choice probability for each segment k = 1,2 is

sk
jτt =

exp
(
δ jq +αk log

(
(1+ r) · p jτt

)
+η jτt

)
1+ exp

(
δ jq +αk log

(
(1+ r) · p jτt

)
+η jτt

)
+ωk

jtτ

=

(
1+

1+ωk
jτt

exp
(
δ jq +αk log

(
(1+ r) · p jτt

)
+η jτt

))−1

. (31)

where, following the idea in Pan (2019), we denote the sum of exponential utility of other listings
as the market-wide states ω jτt =

(
ω1

jτt ,ω
2
jτt

)
:33

ω
k
jτt = ∑

j′ 6= j
exp
(

δ j′q +α
k log

(
(1+ r) · p j′τt

)
+η j′τt

)
.

Also note that the arrival rate λ jτt contains time-invariant states about the night, such as whether
it is a weekend, holiday, or the effect of seasonality. These states, as well as the lead time τ , are
important states that drive the pricing decisions. Relatively, the effect of η jτt is small and thus I
set all η to zero when computing optimal prices.

Now, denote the price path by an optimizing listing j with attention probability µ j as p̃ jτt .
These prices are set according to and one can solve the problem backwards.

Illustrating example. I start by illustrating the solution of the problem with two periods. In
period T = 12, the problem is static because the continuation value is zero. Hence we have

max
p

π jτ,12
(

p,ω jτ,12
)
. (32)

The first-order condition is

p∗jτ,12 =
c j

1− f
−
(

∂q jτ,12

∂ p jτ,12

)−1

q jτ,12. (33)

In period T −1 = 11, the problem is different in two ways. First, if the room is not occupied in this
period, it can still be listed in the next period, creating an option value that drives the prices higher.
Second, if the manager gets a chance to act, she knows that she might not get another chance to act
next period, making it so that her choices today is partially tied to her payoff tomorrow. The value
function in this period reflects these two elements:

Vjτ,11 = max
p

q jτ,11 ·
(

p · (1− f )− c j
)
+
(
1−q jτ,11

)
·(

µ jE
[
Vjτ,12|ω jτ,11

]
+
(
1−µ j

)
E
[
q jτ,12|ω jτ,11

](
p · (1− f )− c j

))
(34)

where, with one minus the probability of a sale, the manager gets her expected payoff renting the
listing in month 12 (the option value). However, with probability 1−µ j, she does not get a chance
to change the price and would rent at the same price as she sets now (with µ j she enters the optimal

33The two ω’s are highly correlated given the variation comes from the set of available competitors.
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decision problem in period 12). Collect terms and take the first-order condition and one gets

(
∂q jτ,11

∂ p
+

∂
((

1−q jτ,11
)
·
(
1−µ j

)
E
[
q jτ,12|ω jτ,11

])
∂ p

)(
p · (1− f )− c j

)
+

q jτ,11 · (1− f )+
(
1−q jτ,11

)(
1−µ j

)
E
[
q jτ,12|ω jτ,11

]
· (1− f )+

∂
((

1−q jτ,11
)

µ j
)

∂ p
E
[
Vjτ,12|ω jτ,11

]
= 0,

(35)

which is closed-form once we solve for Vjτ,12.
A note on the expectation operator. I approximate the expectation by drawing ω’s from the

empirical distribution.

General problem. In general, one can generally write down the value function as follows, sup-
pressing j and τ subscripts:

Vt = max
p

(1− f )

(
qt +(1−µ)(1−qt)E

[
T

∑
ι=t+1

(1−µ)ι−t−1

(
ι−1

∏
ι ′=t+1

(1−qι ′)

)
qι |ωt

])(
p− c

1− f

)
+

(1−qt)E

[
T

∑
ι=t+1

(1−µ)ι−t−1

(
ι−1

∏
ι ′=t+1

(1−qι ′)

)
µVι |ωτ

]
, (36)

this value function can be solved in closed-form via backward induction. Denote

∆t = (1− f )

(
qt +(1−µ)(1−qt)E

[
T

∑
ι=t+1

(1−µ)ι−t−1

(
ι−1

∏
ι ′=t+1

(1−qι ′)

)
qι |ωt

])
(37)

and

Ωt = (1−qt)E

[
T

∑
ι=t+1

(1−µ)ι−t−1

(
ι−1

∏
ι ′=t+1

(1−qι ′)

)
µVι |ωt

]
(38)

and one can write the FOC in a simple term

p∗t =
c

1− f
−
(

∂∆t

∂ p

)−1(
∆t +

∂Ωt

∂ p

)
. (39)

D.4 Counterfactual: Seller pricing with known price-adjustment factors
One counterfactual I entertain is what happens when the platform first proposes a pre-committed
set of price-adjustment factors (say summer premium or last-minute discounts), and based on these
adjustment factors, sellers set one price for each listing. This section outlines the seller optimal
pricing under this counterfactual scenario.

Denote seller price as p̄ jq and platform’s adjustment factor as amlτt (for market m, listing-type
l, night τ , and based on time before checkin t− τ). The final price before tax and consumer fee is
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(1+amlτt) p̄ jq. We can write the seller objective as (suppress m and l)

max
p ∑

τ

(
q jτ,1

(
(1− f )

(
1+amlτ,1

)
p− c j

)
+
(
1−q jτ,1

)
q jτ,2

(
(1− f )

(
1+amlτ,2

)
p− c j

)
+

(
1−q jτ,1

)(
1−q jτ,2

)
q jτ,3

(
(1− f )

(
1+amlτ,3

)
p− c j

)
+ ...+ ∏

ι=1,...,11
(1−q jτ,ι)q jτ,12

(
(1− f )

(
1+amlτ,12

)
p− c j

))

=max
p ∑

τ

(
T

∑
t=1

∏
ι≤t−1

(1−q jτ,ι)q jτ,t
(
(1− f )

(
1+amlτ,t

)
p− c j

))
.

Take the first-order condition and we arrive at the “base price” of each listing at

pcounterfactual
j =−

∑τ ∑t

(
(1− f )

(
1+amlτ,t

)
∏ι≤t−1

(
1−q jτ,ι

)
q jτ,t −

(
∂q jτ,t

∂ p ∏ι≤t−1
(
1−q jτ,ι

)
−∑ι ′≤t−1

∂q jτ,ι ′
∂ p ∏ι 6=ι ′

(
1−q jτ,ι

)
q jτ,t

)
× c j

)
∑τ ∑t

(
∂q jτ,t

∂ p ∏ι≤t−1
(
1−q jτ,ι

)
−∑ι ′≤t−1

∂q jτ,ι ′
∂ p ∏ι 6=ι ′

(
1−q jτ,ι

)
q jτ,t

)
(1− f )

(
1+amlτ,t

) .

E Appendix: Additional tables and figures

Appendix Table 4: Sellers’ number of listings on other measures of price variation

Dependent variable:

cond. std of %prices freq. of price change %weekend premium %holiday premium

(1) (2) (3) (4)

2 listings 0.003∗∗ 0.027∗∗∗ 0.007∗ −0.001
(0.001) (0.008) (0.004) (0.001)

3-5 listings 0.010∗∗∗ 0.055∗∗∗ 0.007∗ −0.006∗∗∗

(0.002) (0.010) (0.004) (0.001)

6+ listings 0.017∗∗∗ 0.021 0.014 −0.014∗∗∗

(0.004) (0.022) (0.011) (0.004)

baseline Y 0.016 0.192 0.032 -0.008
seller FE no no no no
loc-time FE yes yes yes yes
loc-room type FE yes yes yes yes
amenities FE yes yes yes yes
Observations 71,550 65,737 70,484 70,767
R2 0.553 0.336 0.559 0.505

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Notes: See notes for Table 2.
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Appendix Figure 1: Hierarchical clustering of price level, price change, demand, and seller scale

Notes: These figures illustrate the clustering of listings based on the moments described in

Section 4.5.
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Appendix Figure 2: Average own-price elasticity over time-to-check-in

Notes: Implied elasticities over time-to-check-in.
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Appendix Table 5: Supply-side estimates: top 75 segments
% of sample marginal cost ($) std err prob(adjust price) (µ , %) std err expected nr. unique prices (ρ) std err dynamic pricing (θ , %) std err fixed costs ($) std err

group001 2.9 39.7 0.5 0.7 0.1 0.0 2.5 6473.6 367.3
group002 2.8 16.7 0.3 100.0 3.6 100.0 1.0 6870.9 391.1
group003 2.6 24.5 0.4 0.0 0.0 0.3 0.1 8.8 0.1 5960.9 376.5
group004 2.2 17.0 0.5 0.0 4.5 0.2 0.4 25.3 3.6 7455.9 440.9
group005 2.0 26.1 0.4 0.0 18.2 0.5 0.3 12.2 0.9 5894.6 399.2
group006 1.9 23.0 0.4 0.3 12.3 0.0 0.7 31.2 4.0 5771.6 422.3
group007 1.9 25.2 0.4 18.0 2.6 0.2 1.0 70.9 3.9 6792.2 470.8
group008 1.8 20.7 0.0 0.3 0.0 0.0 0.1 7096.7 499.5
group009 1.8 87.7 0.3 0.0 0.0 0.0 0.0 24.3 0.4 6686.4 437.1
group010 1.8 67.4 0.4 15.8 2.2 31.0 5.2 51.9 5.3 6066.6 389.2
group011 1.7 38.6 0.3 100.0 2.1 100.0 0.7 6011.8 413.5
group012 1.5 74.3 0.6 0.0 3.1 0.0 0.0 31.0 2.7 7536.9 508.1
group013 1.4 72.0 0.4 0.0 3.0 0.8 0.2 32.2 3.1 5449.0 411.7
group014 1.3 38.9 0.7 99.7 195.2 25.5 6.8 2.0 4.4 4839.0 421.3
group015 1.3 20.6 0.4 0.0 5.9 0.9 1.0 29.6 7.8 5043.1 424.9
group016 1.2 34.2 0.4 100.0 14.8 0.9 0.2 25.9 2.5 6505.6 480.1
group017 1.2 123.4 0.5 8.8 4.0 31.0 14.2 56.5 3.9 6491.5 440.1
group018 1.2 92.2 0.4 14.1 4.0 4.1 2.3 52.9 5.3 6422.9 455.1
group019 1.1 27.2 0.5 99.9 46.1 1.0 0.1 8.2 1.7 6182.1 438.8
group020 1.1 25.9 1.1 0.0 57.2 1.5 0.2 5.0 9.0 4195.7 440.9
group021 1.1 55.0 0.5 100.0 53.8 12.7 3.2 11.8 7.0 5765.2 492.6
group022 1.1 25.9 0.5 100.0 3.8 0.0 26.9 99.5 2.8 6082.9 506.5
group023 1.1 12.9 0.4 100.0 7.3 100.0 1.0 3229.4 406.4
group024 1.0 37.5 0.5 0.0 7.6 0.0 0.8 25.1 7.7 6049.1 503.9
group025 1.0 25.2 0.7 0.0 9.8 1.1 0.7 22.8 4.5 4631.2 458.0
group026 1.0 18.4 0.5 99.3 66.7 1.5 0.6 11.3 9.4 4701.1 488.1
group027 1.0 33.4 0.4 95.3 1151.5 1.3 0.5 0.8 4.4 5323.6 493.0
group028 1.0 84.8 0.0 0.0 0.0 31.0 0.0 34.3 0.0 4535.3 472.6
group029 1.0 218.7 0.4 1.7 3.2 100.0 3.6 5943.3 520.3
group030 1.0 41.9 0.3 100.0 80.6 6.6 1.1 4.6 0.4 3044.8 435.1
group031 1.0 42.5 0.3 100.0 5.5 0.1 0.2 47.5 2.8 2790.2 417.6
group032 0.9 25.6 0.4 81.3 49.2 0.7 0.7 21.1 5.2 4121.2 446.6
group033 0.9 67.1 0.4 7.4 0.5 0.0 9.1 4111.5 436.9
group034 0.9 12.9 0.5 100.0 3.0 26.5 51.2 96.0 2.6 4244.6 425.8
group035 0.9 35.8 0.4 100.0 7.2 21.2 6.9 55.0 3.0 4346.4 471.0
group036 0.9 2.3 0.7 55.1 22.5 2.1 0.4 15.2 3.5 3599.7 442.8
group037 0.9 21.8 0.5 100.0 14.8 4.5 1.5 40.7 3.7 3295.2 441.2
group038 0.8 12.6 0.6 100.0 5.6 1.5 0.3 50.5 2.3 5656.3 513.5
group039 0.8 23.4 0.5 0.7 7.6 0.0 1.4 60.8 11.5 6018.2 535.1
group040 0.8 53.4 0.4 100.0 4.7 10.4 1.6 44.1 1.8 4153.1 455.6
group041 0.8 37.8 0.5 100.0 63.6 31.0 4.2 5.9 4.5 3325.2 437.4
group042 0.8 93.8 0.5 85.6 324.1 9.5 1.3 2.4 5.4 6734.1 530.6
group043 0.8 68.4 0.0 0.0 0.0 100.0 0.0 4395.5 472.7
group044 0.8 14.1 0.3 37.2 4.2 0.0 0.5 80.9 2.4 3548.0 458.6
group045 0.8 7.9 0.4 100.0 2.4 100.0 0.4 3870.8 454.4
group046 0.8 29.5 0.5 1.6 3.1 16.3 7.3 38.6 3.8 6141.9 559.3
group047 0.7 39.9 0.5 0.0 8.7 100.0 4.0 7349.6 653.0
group048 0.7 106.8 0.4 6.0 1.3 0.1 0.3 79.2 2.2 4400.9 526.2
group049 0.7 150.9 0.3 100.0 1.7 100.0 0.4 6367.5 580.7
group050 0.7 101.1 0.6 71.2 3.3 100.0 2.7 15097.1 2110.4
group051 0.7 31.0 0.4 100.0 2.5 1.1 13.0 98.9 2.1 5982.6 532.2
group052 0.7 914.4 0.0 50.9 0.0 15.7 Inf 49.9 0.0 5162.4 1138.7
group053 0.7 335.0 0.3 0.0 0.0 0.0 0.0 5629.0 593.5
group054 0.7 124.3 0.3 100.0 4.9 100.0 2.3 3836.4 587.7
group055 0.7 21.3 0.4 0.0 547.0 0.5 0.5 0.8 10.9 7080.0 679.1
group056 0.7 20.1 0.3 30.7 5.8 2.1 1.1 44.4 6.0 6886.8 633.8
group057 0.7 120.0 0.4 6.0 1.9 100.0 4.5 7908.0 723.3
group058 0.7 -4.2 0.0 10.2 0.6 0.1 0.1 5.8 0.0 10952.6 987.3
group059 0.7 87.0 0.4 88.2 110.9 27.3 1.0 4.9 3.1 5411.0 573.5
group060 0.6 59.8 0.8 3.2 0.4 0.0 4.3 5305.9 587.3
group061 0.6 119.5 0.4 0.8 0.3 0.0 1.6 5765.0 589.8
group062 0.6 47.8 0.4 0.7 2.3 31.0 4.6 52.6 6.5 4621.7 562.6
group063 0.6 38.4 0.5 4.7 2.2 2.6 0.3 45.2 1.8 6079.6 553.9
group064 0.6 24.7 0.4 100.0 10.8 100.0 3.8 4674.3 557.4
group065 0.6 72.5 0.5 0.1 2.0 100.0 2.5 4265.6 486.8
group066 0.6 35.0 0.4 95.1 2.5 11.6 1.0 50.2 1.2 2368.1 540.4
group067 0.6 40.6 0.3 100.0 5.1 1.1 40.1 99.2 3.3 2025.2 541.9
group068 0.6 63.2 0.5 8.1 2.8 30.8 27.8 57.4 23.1 3683.6 537.2
group069 0.6 20.4 0.3 66.3 6.9 2.4 0.2 28.3 2.6 2690.6 509.0
group070 0.6 91.4 0.4 0.0 18.9 100.0 2.1 5817.6 683.9
group071 0.6 35.4 0.4 100.0 4.9 100.0 1.4 2702.8 553.9
group072 0.6 23.2 0.8 0.0 9.0 100.0 76.5 4378.0 600.5
group073 0.5 52.6 0.8 53.9 485.5 10.2 11.3 1.3 22.7 8130.3 812.1
group074 0.5 40.2 0.4 13.0 2.4 3.5 2.2 74.9 3.2 5887.8 708.2
group075 0.5 50.7 3.3 0.0 3.0 0.1 24.5 94.9 12.7 4942.2 588.2

Notes: Supply-side estimates for the top-75 segments. Estimates of ρ is not presented when θ → 1, and estimates of µ is not presented when θ → 0.
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Appendix Table 6: Supply-side estimates: bottom 75 segments
% of sample marginal cost ($) std err prob(adjust price) (µ , %) std err expected nr. unique prices (ρ) std err dynamic pricing (θ , %) std err fixed costs ($) std err

group076 0.5 64.7 0.4 100.0 0.6 100.0 0.3 5476.1 649.5
group077 0.5 36.5 0.4 3.2 5.0 31.0 17.5 31.6 10.6 4805.3 567.9
group078 0.5 22.3 1.4 0.0 7.6 0.5 3.3 65.7 24.7 6539.7 656.1
group079 0.5 90.5 0.6 99.9 2.5 30.8 6.3 39.7 5.2 3921.8 619.5
group080 0.5 113.5 0.3 0.1 1.1 100.0 1.3 4606.7 566.2
group081 0.5 34.4 0.4 99.9 91.0 18.1 5.6 7.8 6.2 2759.9 507.7
group082 0.5 28.4 0.4 15.2 2.5 9.7 45.5 98.0 1.3 1966.0 556.7
group083 0.5 150.6 0.3 100.0 4.0 100.0 1.5 4181.2 578.4
group084 0.5 62.7 0.4 100.0 2.6 0.0 2.6 94.7 2.2 3130.0 575.1
group085 0.5 46.1 0.7 2.5 59.0 11.8 30.1 21.9 13.2 4962.1 740.7
group086 0.5 30.7 0.4 80.2 4.4 3.5 0.3 30.2 1.5 2407.5 592.5
group087 0.5 34.6 0.0 0.0 0.0 31.0 0.0 98.3 0.0 6777.4 847.2
group088 0.4 41.6 0.5 7.0 1.9 0.0 5.2 95.6 3.7 3728.9 617.2
group089 0.4 207.1 0.4 38.5 2.4 31.0 65.6 98.7 1.9 7459.2 885.8
group090 0.4 72.7 0.4 98.8 1.1 6.1 5.9 93.2 1.0 2485.0 607.7
group091 0.4 39.9 0.4 57.7 7.5 100.0 7.9 2733.3 609.5
group092 0.4 30.0 0.3 100.0 1.4 100.0 0.2 1412.1 744.9
group093 0.4 20.7 0.3 100.0 4.9 100.0 0.6 5518.5 652.1
group094 0.4 188.7 0.7 3.3 2.1 0.1 39.0 7320.5 1133.2
group095 0.4 3.1 0.7 2.0 11.2 0.3 0.3 6.7 8.3 5970.4 735.4
group096 0.4 55.5 0.7 1.7 16.9 100.0 33.2 5198.1 1235.9
group097 0.4 49.1 0.6 100.0 112.8 17.7 21.8 8.0 11.9 10545.4 1221.4
group098 0.4 23.8 0.4 78.5 3.8 0.9 0.3 47.2 2.3 1620.0 665.2
group099 0.4 29.0 0.5 100.0 4.8 100.0 9.1 2844.7 787.4
group100 0.4 39.3 0.5 39.2 3.8 30.8 160.4 96.6 12.1 3611.0 658.8
group101 0.4 32.1 0.4 19.0 9.6 3.6 1.4 28.3 6.5 2899.3 655.5
group102 0.4 10.8 0.3 3.8 13.0 2.1 1.0 32.8 11.3 4710.2 659.7
group103 0.4 53.2 0.4 30.7 1.7 100.0 3.0 2580.4 628.6
group104 0.4 6.2 0.4 100.0 22.5 0.8 0.7 48.7 5.3 4683.6 732.7
group105 0.4 145.9 0.6 68.6 12.7 100.0 3.4 3833.4 756.9
group106 0.4 29.9 0.4 78.1 5.6 27.3 9.5 53.5 2.6 4317.5 699.4
group107 0.3 44.5 0.4 98.5 2.9 100.0 1.5 10006.7 1256.4
group108 0.3 54.3 0.4 29.9 2.5 100.0 3.1 1830.2 606.2
group109 0.3 54.6 0.5 0.0 5.3 100.0 10.0 1596.7 649.3
group110 0.3 40.0 0.4 100.0 2.7 31.0 12.1 93.8 1.9 3530.6 746.4
group111 0.3 127.6 0.3 0.0 0.8 100.0 1.7 6967.0 871.3
group112 0.3 166.7 0.7 2.3 10.7 100.0 7.9 4972.7 714.8
group113 0.3 62.2 0.5 21.4 2.5 100.0 4.5 8850.5 1267.9
group114 0.3 28.0 0.5 14.3 23.4 16.8 19.6 22.2 22.7 5722.3 878.2
group115 0.3 50.7 0.5 19.8 4.3 100.0 2.9 4566.6 713.2
group116 0.3 24.3 0.3 100.0 2.9 100.0 0.3 3460.1 825.5
group117 0.3 49.2 0.4 0.0 0.3 100.0 0.3 9986.6 832.5
group118 0.3 14.9 0.6 100.0 9.0 0.0 0.1 53.0 1.3 4100.7 762.4
group119 0.3 46.0 0.7 0.0 0.9 8.6 1814.7 99.7 2.4 6915.0 877.7
group120 0.3 153.3 0.6 0.0 3.2 100.0 2.1 8587.6 1254.9
group121 0.3 110.0 0.4 0.0 2.1 100.0 0.7 3823.7 715.8
group122 0.3 275.6 0.4 100.0 0.7 99.8 1.9 2831.0 798.9
group123 0.3 308.9 0.4 100.0 0.6 100.0 0.5 10434.3 1357.2
group124 0.2 59.9 0.3 49.1 2.1 100.0 3.0 3205.4 859.7
group125 0.2 196.6 0.6 0.0 0.3 100.0 1.3 6840.0 575.4
group126 0.2 195.1 0.6 0.0 2.5 100.0 2.1 12483.2 2117.0
group127 0.2 60.0 0.5 79.7 1.5 31.0 2.0 67.3 1.6 4459.2 819.4
group128 0.2 117.0 0.4 0.0 2.1 100.0 1.5 15113.0 2549.5
group129 0.2 115.8 0.4 0.0 1.7 100.0 2.2 11369.8 1680.2
group130 0.2 76.6 0.3 10.0 0.9 100.0 1.3 3465.6 987.6
group131 0.2 23.1 0.4 100.0 0.8 30.1 14.0 70.3 2.1 2507.3 876.4
group132 0.2 67.5 0.4 100.0 1.9 100.0 0.4 9307.9 1241.2
group133 0.2 53.6 0.6 66.4 1.4 7.6 10.0 89.9 2.3 5216.5 952.0
group134 0.2 36.0 0.5 59.0 2.5 28.8 29.9 79.2 4.3 509.3 1011.3
group135 0.2 21.0 0.4 21.6 5.2 31.0 15.3 64.9 6.6 7471.7 1438.0
group136 0.2 66.8 0.4 0.0 0.2 100.0 0.5 6952.2 1137.5
group137 0.1 35.2 0.4 68.4 0.4 100.0 0.5 3045.9 1145.8
group138 0.1 100.6 0.4 39.6 3.2 100.0 4.1 6366.8 1400.6
group139 0.1 89.0 0.7 98.1 1.0 100.0 7.8 6840.0 575.4
group140 0.1 68.0 0.0 53.3 0.0 6.5 Inf 46.4 0.0 15443.9 2556.6
group141 0.1 15.4 0.0 53.9 0.0 2.8 Inf 53.9 0.0 6840.0 575.4
group142 0.1 29.8 0.4 19.8 3.7 100.0 0.8 11587.9 2571.9
group143 0.1 13.3 0.4 79.9 1.5 99.9 1.1 5789.5 1058.6
group144 0.1 104.8 0.4 100.0 1.5 100.0 0.2 3378.5 1104.3
group145 0.1 57.2 0.4 22.4 1.1 100.0 1.8 440.9 1636.5
group146 0.1 93.4 0.4 100.0 0.4 31.0 91.5 98.1 3.0 6840.0 575.4
group147 0.1 302.2 0.7 50.7 2.5 100.0 5.0 6840.0 575.4
group148 0.1 44.2 0.4 91.1 3.7 100.0 1.8 6840.0 575.4
group149 0.0 176.8 0.5 100.0 0.4 100.0 0.8 6840.0 575.4
group150 0.0 -50.0 19.5 100.0 326.5 0.0 0.0 52.7 2.7 6840.0 575.4

Notes: Supply-side estimates for the bottom-75 segments.
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Appendix Table 7: Fixed costs: auxiliary parameter estimates
par est std err

post 2018 regulation -0.902 0.103
distance to union sq -3.338 0.245
distance squared 0.790 0.065
scale of the fixed cost error 3.438 0.152

Notes: Reports fixed cost parameters except for segment-specific average fixed cost (summarized in Figure 8).
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