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Abstract

The role of advertising as an “implicit price” has long been recognized by economists

and marketers. However, the impact of personalizing implicit prices on firm profits and

consumer welfare has not been studied. We first conduct a set of large-scale field exper-

iments on Pandora by exogenously shifting the ad load, that is the implicit price, for

ad-supported users. We then use a state-of-the-art machine learning model to examine

the heterogeneous treatment effects of firm’s interventions on listeners behavior, both

in terms of listening hours and in terms of the propensity to subscribe to the ad-free

version of the product. We next show that by reallocating ads across individuals, the

firm can improve subscription profits by 10% without reducing total profits generated

from advertising. To achieve the same subscription rate using a uniform ad-allocation

policy, the firm would need to increase the number of ads served on the platform by

more than 30%. Furthermore, the gains from personalization emerge quickly after im-

plementation, as subscription behavior adapts to changing ad load relatively quickly.

We also evaluate the welfare implications of personalizing implicit prices. Our results

show that, on average, consumer welfare drops by 2% with the proposed personaliza-

tion strategy, and the effect seems to be more pronounced for users that have a higher

willingness to pay.
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Personalized Versioning

1 Introduction

The abundance of free online content creates a challenge for online-content providers to

monetize their platforms. In the mid 1990s and early 2000s, to attract large audiences

and generate advertising revenues, many firms offered online content for free (Edgecliffe-

Johnson 2009). As the industry matured, a number of content publishers experimented with

subscription paywalls (Pérez-Peña and Arango 2009). Although some firms, such as Netflix,

have earned substantial profits through this strategy, the transition to a subscription-only

model has not been especially easy for most firms. For instance, using data on a media

publisher’s website visits, Chiou and Tucker (2013) show that instituting paywalls led to

a 51% drop in online visits. The trade-off between viewership and subscription profits has

led a number of firms, including Hulu, YouTube, Spotify, and Pandora, to adopt a hybrid

approach, offering both an ad-supported free version and an ad-free subscription version. An

interesting question is how those multiple versions should be designed and priced.

In the age of the Internet, digital products have become highly customizable, both

in terms of content (e.g., Pandora’s personalized radio stations) and in terms of pric-

ing. Although academic authors have discussed the returns to personalizing subscription

prices (Shiller et al. 2013) or to engaging in fine-grained group-pricing strategies (Dubé and

Misra 2017), these ideas are rarely implemented in industry.1 Firms such as Amazon and Sta-

ples have faced public backlash for experimenting with charging different prices to different

customers (CNET 2002, Valentino-DeVries et al. 2012).

Fear of customer backlash has led many firms to instead adopt “versioning” strate-

gies (Shapiro et al. 1998), where the seller offers each customer a menu of different product

options, for example ad-supported and paid subscriptions, and allows customers to self-

1The only empirical investigation of fine-grained group pricing that we are aware of is Dubé and Misra
(2017). Fine-grained group pricing approaches the ideal of personalized pricing as the number of groups
becomes larger and the group size becomes smaller.
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select into choosing one of them. These versions can further be customized based on what

the publisher knows about the customer, such as when Pandora customizes music streams

for listeners based on what they have thumbed up and down. The public appears to have a

much more positive view of personalized product content than of personalized prices, because

many people feel that one group of consumers getting different prices for the same product

or service is unfair. Versioning and group pricing are two distinct strategies for the more

general problem of price discrimination.2

In 2015, the White House’s Council of Economic Advisors report (CEA 2015) noted that

it is unclear which of these two strategies will become more prevalent in the era of Big Data:

“It is difficult to predict how big data will influence the prevalence of version-

ing. If it becomes easier to predict individual customers’ willingness to pay and

charge different prices for an identical product, versioning may be replaced by

personalized pricing. On the other hand, versioning has the benefit of reducing

concerns about inequity that arise with personalized pricing, and big data may

facilitate versioning strategies based on “mass customization,” particularly for

information goods that can be customized at relatively little incremental cost.”

Our goal is to demonstrate the role of advertising as an instrument for combining the

two strategies into an idea that might be called “personalized versioning”: consumers choose

between two versions of a product offering, one of which has quality personalization based

on consumer characteristics. In this paper, we report the results and analysis of a field

experiment conducted on Pandora during 2016-2017. During this period, Pandora offered

two products: (i) the Pandora Plus subscription product, and (ii) the ad-supported product

which was offered free of charge. Both of these products were non-interactive radio products,

2Pigou (1920) originally gave versioning and group pricing the names “second-degree” and “third-degree”
price discrimination, respectively. We prefer the more modern terms, versioning and group pricing, both
coined by Shapiro and Varian (Shapiro et al. 1998), because they are more evocative and do not create the
confusion caused by calling two strategies “second-degree” and “third-degree” when they cannot easily be
ranked.
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meaning the listener could not listen to an audio track on demand but could create stations

based on a favorite artist or track, and personalize her stations by thumbing songs up and

down. Both products used the same music catalog and user interface; the main difference

between the two was that Pandora Plus was ad-free, whereas ad-supported Pandora listeners

would encounter ads between tracks, when switching between stations, or when skipping

tracks.3 To manage the trade-off between ad and subscription revenues between these two

versions of the product, Pandora has two levers: (a) setting subscription prices (explicit

price) and (b) changing the number of ads served to ad-supported listeners (implicit price).

Pandora can shift the implicit price by either changing the price of ad impressions or by

allocating ads across listeners. Particularly, the platform can change the number of ads

served to each listener by setting the frequency of scheduled commercial interruptions (or

“ad pods”) as well as the number of scheduled ads per pod.

Increasing the frequency or length of ad pods increases the opportunities to serve an ad,

which we refer to as “ad capacity.” By contrast, the listener’s realized “ad load,” or actual

number of ads served per hour, also depends on the consumption level4 and advertisers’

demand for each listener. Our goal in this paper is to study the gains that arise from

personalizing the ad capacity at the individual level while holding the overall ad inventory

fixed. To solve the firm’s optimization problem, we need to address the following issues:

(a) Endogeneity: Even holding fixed the ad-serving strategy, the realized ad load ex-

perienced by different listeners correlates with both their behavior and advertisers’

demand. For instance, apart from differences in advertisers’ demand for each listener,

the longer listeners stay on the platform, the harder it is for Pandora to fill their full

ad capacity. These correlations create an endogeneity problem, which motivates our

3Pandora Plus offers some additional features including offline listening, the ability to replay songs, and
higher-quality audio.

4Given listener-level frequency caps standard in these ad campaigns, the longer listeners stay on the
platform, the more difficulty they have filling their full ad capacity.
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randomized experiment.

(b) Partial control over realized ad load: The realized ad load not only depends on

the firm’s ad-scheduling policy, but also on advertiser demand (some listeners are in

higher demand than others) and on listener behavior (e.g., the length of a listening

session, which interacts with advertiser frequency caps). This partial control causes

one listener to receive more ads than another even when both receive the same policy

from the firm, and this difference in realized ad load needs to be taken into account in

the firm’s optimization problem.

(c) Extensive-margin adjustments: Listeners assigned to higher ad load conditions

in a given period may change their status by becoming inactive or by switching to a

Pandora Plus subscription. Such extensive-margin adjustments can themselves affect

treatment exposure levels.

(d) Intensive-margin adjustments: The total number of ads served to each individual

depends on both the ad load and the intensive margin of consumption, that is listening

hours in a given period, which needs to be accounted for when solving the firm’s

optimization problem.

We exploit a set of large-scale field experiments that exogenously shift the ad-pod fre-

quency and length for over seven million Pandora listeners during 2016-2017. We then use a

state-of-the-art machine learning model to learn the heterogeneous treatment effects of the

firm’s interventions on the realized ad load, consumers’ extensive-margin decisions (switching

between outside option, plus, and ad-supported options), and consumers’ intensive-margin

decisions (number of ad-supported hours consumed). To learn the heterogeneous treatment

effects of a firm’s interventions, we combine insights from structural estimation with neural

networks.5 We use split neural networks (Kim et al. 2017) to impose exclusion restrictions

5For a few use cases of neural networks for estimating structural models, see Wei and Jiang (2020), and
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that enable the model to better learn heterogeneous treatment effects. Our architecture is

similar to Shalit et al. (2017), who use neural networks to predict individual-level outcomes

across different counterfactuals. Shalit et al. (2017) and Farrell et al. (2018) show neural

networks are effective in learning treatment heterogeneity and achieve comparable perfor-

mance to direct methods for learning heterogeneous treatment effects such as causal forests

and treatment-effect projection (Wager and Athey 2018, Hitsch and Misra 2018).

Subsequently, we solve the firm’s optimization problem and evaluate the impact of the

prescribed policy using an inverse probability-weighted (IPW) estimator; see Horvitz and

Thompson (1952) for its use and origins in statistics and Hitsch and Misra (2018), Yoga-

narasimhan et al. (2020), Rafieian and Yoganarasimhan (2021) for a few recent examples of

IPW estimators in marketing. Our results demonstrate that holding fixed the total number

of ads served, the firm can improve subscription profits by 10% without any loss in total

ad revenue. To achieve the same subscription rate with a uniform allocation strategy, the

firm would have to serve 30% more ads, which would have a negative impact on hours lis-

tened. We then study the impact of the proposed policy on consumer welfare, and show

that, on average, consumer welfare declines by 2%. To the best of our knowledge, this study

is the first to use a field experiment to evaluate the returns to personalizing product qual-

ity. Our results inform policy makers, and firms regarding the implications and returns to

personalizing price/quality of product offerings.

In analyzing the potential that arises from “personalized versioning,” our findings con-

tribute to four strands of academic research. First, we contribute to the literature that

measures the returns to personalization. Researchers have studied personalization in a wide

variety of contexts, examples include prices (Rossi et al. 1996, Shiller et al. 2013, Dubé and

Misra 2017), e-mail content (Ansari and Mela 2003, Sahni et al. 2018), website design (Hauser

et al. 2009), search rankings (Yoganarasimhan 2020), promotions (Hitsch and Misra 2018,

Kaji et al. (2020).
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Yoganarasimhan et al. 2020), mobile advertising (Rafieian and Yoganarasimhan 2021), and

ad sequencing (Rafieian 2019). While the research that involves personalizing advertisement

measures returns to changing ad content or targeting ads to improve ad effectiveness or

revenue from ads, our work focuses on personalizing ad load as an instrument for improving

subscription revenue.

Second, we add to the literature that models product quality as an endogenous decision.

In a single-product setting, Spence (1975) shows that a monopolist may offer a higher or

lower quality level than the social optimum. In a multi-product regime, Mussa and Rosen

(1978) and Maskin and Riley (1984) demonstrate that to attract high-type customers, the

monopolist has the incentive to degrade the quality of lower-end products, which creates a

negative externality on customers with lower quality valuation. This finding relates to the

“damaged goods” literature, where a firm has the incentive to “damage” a developed product

to build a lower-quality version (Deneckere and Preston McAfee 1996). One approach for

implementing versioning is by bundling a good with a “bad” like waiting time or search

cost (Salop 1977, Chiang and Spatt 1982). McManus (2007), Clerides (2002), and Verboven

(2002) provide evidence of versioning in specialty coffee, book publishing, and European

auto industries, respectively. Crawford and Shum (2007) measure the extent of quality

degradation in cable-television subscription bundles, and Crawford et al. (2015) study the

welfare effects of endogenous quality choice. We show that personalizing product quality

helps limit such distortions. In particular, we find that our proposed optimal personalization

of ad load produces subscription benefits equivalent to a uniform increase in ad load (a

degradation in quality) of about 30%. Previous research in marketing has shown service-

quality variation over time can improve profits by increasing customer retention, for some

consumers, a phenomenon potentially explained by risk aversion in the consumer learning

process (Sriram et al. 2015). Our findings show that another kind of variation in quality

of service – across consumers – can improve profits in a product line by inducing users to

7



Personalized Versioning

upgrade to the higher-end products. The substitution between products offered in a product

line, along with switching costs between products, presents yet another opportunity for firms

to leverage changes in quality of service as a screening mechanism.

Third, our results contribute to the literature that considers product-line strategy in

offering free (ad-supported) and paid versions of information goods (Shapiro et al. 1998).

On the theoretical side, this literature extends the versioning framework in Mussa and Rosen

(1978) for information goods that rely on both advertising and subscriptions as sources of

revenue. T̊ag (2009) shows that introducing an ad-free subscription decreases consumer

welfare because the firm has the incentive to increase advertising in the ad-supported version

to earn more profits from the paid product. Researchers have studied the role of dynamics,

consumer heterogeneity, competition, quality learning, and advertiser heterogeneity on the

revenue model adopted by firms (Kumar and Sethi 2009, Sato 2019, Prasad et al. 2003,

Godes et al. 2009, Halbheer et al. 2014, Lin 2020).

On the empirical side, Chiou and Tucker (2013) show introducing paywalls can dramat-

ically reduce viewership. Lambrecht and Misra (2017) present evidence for counter-cyclical

quality improvements to ESPN’s free service. The authors argue consumers are heteroge-

neous in their valuation of content, which may vary over time. This heterogeneity rationalizes

a quality-discrimination mechanism along the time dimension. In this paper, we establish

the trade-offs between ad and subscription revenue, and then show that by personalizing the

ad schedule (quality of service), the firm could improve subscription profits. Although the

idea of using ads as a screening mechanism in freemium products is not new (T̊ag 2009, Sato

2019), we are not aware of any paper that has empirically investigated the personalization

of product quality, especially in the advertising context.

Finally, our findings are also relevant to the price-discrimination literature. Although

the amount of advertising on ad-supported media is a quality of service measure, it can also

be viewed as an implicit price that is charged in units of time rather than money. The
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idea of regarding ads as a price and their possible negative impact on demand for media

is not new (Becker and Murphy 1993, Gentzkow 2007, Wilbur 2008, Goldstein et al. 2014,

Huang et al. 2018). However, to the best of our knowledge, the returns to personalizing

this implicit price and its welfare implications has not been studied before. Theoretically,

third-degree price discrimination could improve social welfare (Varian 1985) or could even

improve consumer surplus by expanding output (Cowan 2012). Dubé and Misra (2017)

examine the returns to an extreme form of group pricing using a large-scale field experiment

at Ziprecruiter. They show that while firm profits improve by about 10%, consumer surplus

falls less than 1%. One of the main differences between our problem and a classical price-

discrimination problem is the fact that the consumer has the option to pay both with time

and money. Therefore, listeners are screened based on both willingness to pay and their

marginal value of time.6 This means that, the correlation between willingness to pay in

time and money units could influence the effectiveness of our personalization algorithm. For

instance, income and marginal value of time could be positively correlated (Aguiar et al.

2011, 2013). Furthermore, income is likely to be negatively correlated with price sensitivity.

On the one hand, the algorithm has the incentive to move more ads towards higher-income

individuals because they are less price sensitive and more likely to upgrade to the paid

subscription. On the other hand, higher-income individuals may place a larger value on

their time and are also more likely to churn when faced with more ads. Because of these

trade-offs, the ad-allocation mechanism and its welfare implications are a priori ambiguous.

The rest of this paper is organized as follows. We first introduce a conceptual model to

discuss the personalized versioning idea and illustrate trade-offs between ad and subscription

revenues. We then discuss the field experiments conducted at Pandora Media and present

reduced-form evidence to illustrate the impact of changing ad load on listeners’ choices.

6The idea of using differences in valuation of time for optimizing menu offerings and its welfare implications
has been discussed in Salop (1977), and Chiang and Spatt (1982). However, we are not aware of any empirical
work that has investigated a personalized policy that leverages this heterogeneity.
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Subsequently, we use a state-of-the-art machine learning model to learn the heterogeneity in

response to changes in ad load among listeners. Which are then leveraged to reallocate ads

to improve firm profits. Finally, we discuss the prescribed policy and its welfare implications.

2 Conceptual Model

In this section, we illustrate the benefits of personalized versioning with a set of examples.

First, we consider a simple utility model that reflects the discrete choice between the outside

options, consuming the ad-supported product, or using the paid subscription. Consider the

following model:

u(z, p | θ, β, α) = max



0 outside option,

θ − αz ad supported,

θ − βp paid version,

(1)

where θ is the utility from consuming the product, z specifies the ad load7, and p is the

subscription price. In the ad-supported condition, users are effectively paying with their time

by listening to ads. Therefore, parameters α and β reflect how time and money are valued

by users, that is users with higher/lower values of α and β are more/less sensitive to ads and

prices, respectively. Also, let γ and c be the revenue per ad and marginal cost of offering the

service, respectively. Finally, let θα = θ
a

and θβ = θ
b
. If θβ > z and

θβ
θα
> z

p
, the user picks the

ad-supported version. And if θα > p and
θβ
θα
< z

p
, the paid version is purchased; otherwise,

the outside option is preferred. Figure 1 illustrates the decision regions for different types

when price is set to p and ad load is equal to z.

7In this simplified model, we assume users can consume the service in exchange for listening to z ads. In
our case study, we account for the fact that the intensive margin of consumption (number of hours) could
vary across users, and that possibility factors into the ad revenue.
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θβ

θα

R3

R1

R2

p

z

Figure 1: Decision regions for different types (θα, θβ) for price vector (p, z), where p and γz
are assumed to be larger than c. Types that lie in R1 pick the outside option, types in R2

subscribe for the paid service, and those in R3 choose the ad-supported version.

A monopolist that can perfectly discriminate along both ad load and price dimensions

will maximize its profits for each type (θa, θb). Note that a listener of type (θα, θβ) has a

willingness to consume at most z = θα ads, and pay price p = θβ. For a listener with γθα >

max(θβ, c), the monopolist will only offer the ad-supported service with (p, z) = (∞, θα), and

for those with θβ > max(γθα, c), only the subscription service is offered with (p, z) = (θβ,∞),

and when none of these conditions are satisfied serving the customer would not be worthwhile

and (p, z) = (∞,∞). Figure 2 demonstrates the decision regions for a monopolist based on

the type of products sold, and the profits over regions R2 and R3 are equal to:

Π∗ =
∫ ∞
θβ=c

∫ 1
γ
θβ

θα=0
(θβ − c)f(θα, θβ)dθαdθβ +

∫ ∞
θα= c

γ

∫ γθα

θβ=0
(γθα − c)f(θα, θβ)dθβdθα , (2)

where f(θα, θβ) is the joint density of (θα, θβ).
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θβ

θα

R3

R1

R2

c

c
γ

slope =
1

γ

Figure 2: Decision regions for different types (θα, θβ) for a price-ad load-discriminating mo-
nopolist. Serving customers in region R1 is not worthwhile; those in R2 will purchase the
paid subscription and the rest will use the ad-supported service.

The results above demonstrate that when the monopolist has full information, he will

only make one of the products available to each customer. However, these results rely

on the crucial assumption that the monopolist can accurately observe the type of each

listener (θα, θβ). Our goal is to illustrate the benefits of offering a personalized menu of

products when the seller has partial information about the type of consumers or randomness

exists in choices made by the customers. We call this practice “personalized versioning,”

which is akin to combining second- and third-degree price discrimination. The seller uses its

information about the type of each customer to offer a personalized menu rather than only

one product or price.

Let us consider a few simple examples to illustrate this idea:

• Separable types: Consider a monopolist (he) who needs to provide service to a

customer (she). The monopolist knows that with probability ρ1, the customer is of

type (θ(1)
α , θ

(1)
β ), and with probability ρ2 = 1−ρ1, she is of type (θ(2)

α , θ
(2)
β ). If θ(1)

α > θ(2)
α
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θβ

θα
c

c
γ

slope =
1

γ(
θ(2)
α , θ

(2)
β

)

(
θ(1)
α , θ

(1)
β

)

Figure 3: Perfectly separable condition. The seller is uncertain if the consumer is of type
1 or 2, but offering a menu with (p, z) = (θ(1)

α , θ
(2)
β ) yields profits that are equal to the case

where the seller has full information.

and θ
(2)
β > θ

(1)
β (see Figure 3 for visual illustration), it is optimal for the monopolist to

offer the paid version when the realized type is 1 and offer the ad-supported product

when the realized type is 2. In this case, by offering a menu (p, z) = (θ(1)
α , θ

(2)
β ), the

firm can extract monopoly profits regardless of the type of customer. In particular,

if the customer is of type 1, she purchases the paid version, whereas if she is of type

2, she uses the ad-supported product. In other words, in this case, using a menu can

fully separate types from each other and resolves the uncertainty.

• Inseparable types: Let us now consider a more nuanced case. The customer can be of

one of two types with probabilities ρ1 and ρ2 = 1−ρ1. This time (θ(2)
α , θ

(2)
β ) > (θ(1)

α , θ
(1)
β );

see Figure 4 for visual illustration. In this case, the optimal menu corresponds to one

of the five red dots in Figure 4. Depending on the values of γ, c, ρ1, ρ2, (θ(1)
α , θ

(1)
β ), and

(θ(2)
α , θ

(2)
β ), either of these can be the optimal menu to offer. The only case where both
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θβ

θα

(
∞, θ(1)

β

)

Ä
θ(1)
α ,∞

ä
Ç
θ(1)
α , θ(1)

α

θ
(2)
β

θ
(2)
α

− ε
å

Ä
θ(2)
α ,∞

ä
(
∞, θ(2)

β

)(
θ(2)
α , θ

(2)
β

)

(
θ(1)
α , θ

(1)
β

)

Figure 4: Inseparable condition. The uncertainty in the types cannot be perfectly dealt
with by using a personalize menu. The optimal menu (p, z) is one of the five red dots and
depending upon the types and realization probabilities either one can be optimal.

products are offered is when (p, z) =

Ç
θ(1)
α , θ(1)

α

θ
(2)
β

θ
(2)
α

− ε
å

. Note that in this case, the

existence of type 1 imposes a positive externality on the ad load, that is the quality of

service, when type 2 is realized. In other words, if the seller were certain the customer

is of type 2, he would have the incentive to increase the ad load. However, in this case,

because the customer is served under both conditions the ad load cannot be increased

to more than θ(1)
α

θ
(2)
β

θ
(2)
α

to make it incentive compatible for the type 2 customer to use

the ad-supported service8.

The examples above illustrate that the combination of group pricing and versioning can

make use of both the partial information that the firm may have and the customer’s private

information. We refer to this approach as personalized versioning. Note the application of

personalized versioning is not limited to the case where uncertainty is present in parameter

estimates, but also applies in random utility models even when parameter uncertainty is

8Recall from Figure 2 that if
θβ
θα
> 1

γ , the seller is better off providing the ad-supported service.
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neglected. Before moving on to the next section, we use a random utility model that cor-

responds to (1) to further discuss the trade-offs involved in personalizing ad load. Consider

the following model:

u(z, p; θ, β, α) = max



ε0 outside option,

θ − αz + εa ad-supported,

θ − βp+ εp paid subscription,

where ε0, εa, and εp are independent random variables that follow a type-I extreme value

distribution. The rest of the parameters are defined as in (1).

Those who tend to have higher willingness to pay in money terms are likely more sensitive

when paying in time units. For instance, higher-income individuals tend to have lower price

elasticity but higher marginal value of time (Aguiar et al. 2011, 2013). This confound can

generate a negative correlation between price (β) and time sensitivity (α) in this set up.

On the one hand, the monopolist has the incentive to serve fewer ads to more ad-sensitive

users, that is larger α. On the other hand, the same users likely have higher willingness to

pay, that is smaller β, and are more likely to upgrade to the subscription service if they face

higher prices in time terms.

Note that if the seller were to offer only the ad-supported version, customers with higher

ad sensitivity would receive fewer ads. However, the correlation structure between ad sen-

sitivity (α) and price sensitivity (β) can lead to both higher or lower frequency of ads for

more ad-sensitivity users. Let us consider the problem of personalizing the ad load z given a

fixed price p for the subscription service. Let us assume the marginal cost of offering service

is c, and revenue from serving each ad is γ. The problem the service provider faces is to
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maximize
z

eθ−αz

1 + eθ−αz + eθ−βp
(γz − c)︸ ︷︷ ︸

expected profits from ads

+
eθ−βp

1 + eθ−αz + eθ−βp
(p− c)︸ ︷︷ ︸

expected profits from subscription

. (3)

As discussed above, on the one hand, a higher ad load leads to more profits from sub-

scriptions and increases revenue conditional on being an ad-supported member; on the other

hand, it lowers profits from the ad-supported users by increasing churn. Furthermore, the

correlation structure between ad and price elasticity can lead to either higher or lower ad load

for users with higher ad elasticity. To illustrate this trade-off, let us hold the price fixed and

optimize the ad load for a set of given parameters (θ, α, β, p, γ, c) while enforcing different

correlation structures between α and β. Let us assume θ = 4, β = 2− (0.1)α, γ = 0.1, c = 1,

and p = 5, and let α vary between 0 and 1. The optimal ad load (z) as a function of ad

sensitivity is strictly decreasing and is plotted in panel (a) of Figure 5. However, if the corre-

lation structure between price and ad sensitivity is stronger, say, β = 2− 2α, the optimal ad

load could be a non-monotonic function of ad sensitivity as depicted in panel (b) of Figure 5.

This example illustrates that in our multi-product setting, forming ex-ante predictions on

which customer segments, for example high/low income, bear the cost of personalizing the

ad load is difficult.
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(a) (b)

Figure 5: Optimal ad load as a function of ad sensitivity. (a) In this panel, price sensitivity
β = 2− (0.1)α, the optimal ad load is a decreasing function of ad sensitivity because gains
from subscriptions do not outweigh the losses. (b) The price sensitivity β = 2 − 2α, and
α varies between 0 and 1. In this case, optimal ad load is a non-monotonic function of ad
sensitivity, because users with higher ad sensitivity are less price sensitive, and uplift from
subscriptions outweighs the losses.

3 Field Experiments at Pandora Media

Now that we have built a conceptual model to understand the trade-offs, we delve into the

field experiments used in this study. At the time of this experiment, Pandora offered two

tiers of products: (a) ad-supported and (b) plus. The ad-supported and plus versions are

both “radio”9 products and have the same music catalog and user interface. Whereas the

plus subscription is ad free with a monthly subscription fee of $4.99, ad-supported listeners

are exposed to video/audio ads in exchange for using the service.

9The radio products offer quasi-audio-on-demand services as they personalize the radio stations to cater
to listener preferences using the feedback (thumbs up/down, and skips) provided by the listeners. In the
second quarter of 2017, Pandora started offering the premium service, which was an ad-free audio-on-demand
product.
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Before delving into the analysis, we illustrate that our randomization algorithm has

achieved its goal and treatment assignment is not systematically correlated with any covari-

ates of interest. We compare the users across treatment and control groups who were active

in the first quarter of 2016 before the experiment, and compare their age, gender, and some

of the other key behavioral variables in the pre-treatment period in Table 110. Except for all

hours, which is slightly higher for the treatment group at P < 0.05, the rest of the variables

are not statistically different from each other. Overall, this table shows the treatment and

control groups are not systematically different, and confirms the treatment assignment has

been random.11

10Due to our agreement with Pandora we cannot reveal the actual estimates for some of these features;
therefore, we have normalized those features such that the sample average of the control group is equal to
100.

11Note that within the treatment group, we also have different treatment conditions, for example 6x3
versus 4x2 group, and the assignment within these groups has also been randomized. We verified that the
randomization worked as expected; however, here we are only comparing the overall treatment and control
groups.
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Table 1: Comparing treatment and control groups across some of the pre-treatment features
calculated during the first quarter of 2016. All features except for gender and zip code mean
income are normalized such that the mean of control is equal to 100. Standard errors are
reported in the parenthesis.

Variable Treatment Control Difference

All hours 100.437 100 0.437∗

(0.132) (0.351) (0.192)
Ad-supported hours 100.341 100 0.341

(0.144) (0.386) (0.21)
Thumbs (up/down) 100.058 100 0.058

(0.218) (0.586) (0.318)
Thumbs up 100.183 100 0.183

(0.214) (0.574) (0.313)
Skipped tracks 100.358 100 0.358

(0.216) (0.578) (0.314)
Station changes 100.07 100 0.07

(0.393) (1.053) (0.573)
Age 99.946 100 -0.054

(0.032) (0.086) (0.047)
Gender (male = 1) 0.451 0.452 -0.001

(0) (0.001) (0.001)
Zip code mean income 73,436.775 73,438.642 -1.867

(24.738) (66.062) (36.055)

The set of experiments used in this paper shift the time spent consuming ads, by changing

the number of audio ads played between music tracks. Ads are delivered using a set of timers.

When the user starts a session or when an ad pod is delivered, the timer is reset. At the

beginning of every track, the system checks to see if the user is eligible to receive an ad pod,

that is if the timer is set. The length of an ad pod determines the number of ads that can

be served in an ad break. The experiments shift both frequency and length of ad pods using

six experiment conditions and a control cell, which represents the current strategy employed

by the firm. The experiment cells are presented in Table 2 below:
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Table 2: Experiment conditions for audio-ad arms. The size of each treatment cell is specified
as the percentage of all listeners on the platform. The control cell consists of 1% of the total
listeners. Rows and columns correspond to pod frequency and size, respectively.

Audio ads per interruption
1 2 3

3 1%
4 2% 0.5%
5 0.5%

Audio ad
interruptions

per hour
6 0.5% 0.3%

From this point forward, we refer to each cell in our experiment as FxL, where F and L

are intended pod frequency, and length, respectively. For instance, the 3x1 condition refers

to a treatment with three pods per hour, and each pod consists of one ad. The control

condition is similar to the 4x2 condition, but the first ad pod within each listening session is

constrained to have at most one ad. The control condition comprises 1% of the total listeners

on Pandora.

As highlighted before, pod length and frequency determine ad capacity rather than ad

load. Also note that a listener in the 6x3 condition ends up becoming eligible for an ad

pod fewer than six times per hour, because the song endings do not perfectly align with the

timers. In other words, the ad capacity, that is, the number of opportunities to show an ad

per hour, in the FxL condition ends up being far less than F·L. Although the experiments

shifts ad capacity by changing pod frequency and size, the realized number of ads shown to

each listener (ad load) also depends on advertisers’ demand. In other words, the experiment

shifts ad capacity, that is the rate at which ads can be shown to users, rather than the ad

load, that is the realized rate of ads for each user.

Figure 6 depicts the density of realized ad load for users in different treatment cells.

Although higher-ad-capacity conditions have a higher realized ad load, the distribution be-

comes more dispersed as the capacity increases. This finding is indicative of the fact that

filling higher capacities for users tends to be more difficult, because running out of ads to
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Figure 6: Realized ad load across different treatment arms

serve in the higher-capacity conditions is more probable. Table 3 reports the average realized

ad load, capacity, and fill rate during the first year of the experiment. Realized ad capacity

is the number of opportunities that the ad delivery system determines a listener as being

eligible to receive an ad, though not all these opportunities get filled as the system may not

be able to fetch ads to serve to users. The proportion of ad opportunities that were filled are

referred to as the fill rate. As one would expect, the fill rate tends to fall as we move toward

higher-capacity conditions; for example compare the 3x1 and 6x3 conditions. Finally, note

the realized ad load depends on both the realized ad capacity and the fill rate; therefore, an

X% increase in realized ad capacity does not necessarily translate into an X% increase in

realized ad load.
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Table 3: The realized ad load, capacity, and fill rate across treatment/control conditions.
Note that, for example in the 6x3 condition, the realized ad capacity differs from 18 ads per
hour, because the times when songs finish do not perfectly align with the times that users
become eligible to see an ad. Also note that an X% increase in realized ad capacity does not
necessarily translate to an X% increase in realized ad load, because the ad load also depends
on the fill rate, and the system is more likely to run out of ads in higher-capacity conditions.

Experiment condition
3x1 4x2 4x3 5x3 6x2 6x3 Control

Realized ad load 2.947 4.659 5.541 6.123 5.602 6.665 4.208
(0.006) (0.007) (0.008) (0.011) (0.008) (0.023) (0.008)

Realized ad capacity 3.512 6.326 8.289 9.35 7.789 10.347 5.56
(0.007) (0.009) (0.008) (0.013) (0.009) (0.025) (0.013)

Fill rate 0.853 0.738 0.676 0.665 0.723 0.657 0.763
(0) (0) (0.001) (0.001) (0.001) (0.001) (0)

To further demonstrate the partial control problem, we plot the lift in ad load between

the control and 6x3 condition across different consumer groups based on their pre-treatment

ad load in Figure 7. The figure shows the increase in ad load in the 6x3 condition relative

to the control condition is not uniform across different listener groups. The lift in ad load

is more pronounced for consumers who received more ads in the pre-treatment period. This

heterogeneity in the lift reflects the role of advertisers’ demand in the realized ad load and

shows that the additional capacity is more likely to be filled for those consumers who are

more attractive to advertisers. This demonstrates the fact that firms need to account for

the discrepancy between the intended and realized change in the implicit price, which leads

to an additional layer of complexity relative to the traditional pricing problems.

4 Reduced-Form Results

Let us first illustrate the impact of ad load on the overall consumption and substitution to

the subscription service. To that end, we plot the change in the realized ad load, ad revenue,

active users, subscription revenue, ad-supported hours, and all hours, that is, the sum of
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Figure 7: Realized lift in ad load (ads/hours) in the 6x3 condition relative to control as
a function of pre-treatment ad load. Note the lift in ad load could vary drastically across
different groups, due to differences in the attractiveness of different segments for advertisers.
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ad-supported and plus hours, across the highest and lowest ad-load arms relative to the

control condition in Figure 8. The figure measures each outcome of interest as a percentage

change relative to the control arm. For instance, in the 3x1 condition, ad-supported hours

increase by about 2.5% relative to control. Higher ad load leads to higher revenue from

ads and subscriptions, but it drastically affects both extensive and intensive margins of

consumption. Although in the short run, the firm can improve profits by increasing the ad

load, a higher ad load can negatively affect the number of ad-supported hours, which reflects

the long-run potential for ad revenue. Note the impact on the plus subscription stabilizes

much faster than the change in other outcomes. This finding shows that even persistent

short-run changes in quality of service in the ad-supported product can lead to substitution

to the plus subscription. This finding, coupled with switching costs between plus and ad-

supported products, presents an opportunity for the firm to improve subscription profits

through temporary changes in the implicit prices.

Table 4 compares some of the key outcomes, including monthly active users, subscription

rate, and ad-supported hours, across different treatment arms in December 2016, six months

after starting the experiment. As expected, the higher-ad-load conditions led to fewer active

users, ad-supported hours, but an increase in the number of subscribers to the paid version.

Note the outcomes are measured relative to the control arm and as the outcome for the control

condition is normalized to 100. Therefore, one can interpret these results as percentage

changes relative to the control condition.

5 Estimation models

Our goal is to study the impact of personalizing quality of service on firm profits and con-

sumer welfare. To optimize profits and evaluate welfare implications, we first need a demand

model that reflects listeners’ choice between being inactive (outside option), using the ad-
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Figure 8: The trade-offs involved in optimizing ad load. The highest ad load condition
seems to deliver 50% more ads compared to control, the ad revenue grows by about the same
magnitude even though user churn nullifies some of it. Plus subscription revenue grows by
about 25% as users substitute toward the ad-free version as the number of ads decreases.
Note that the impact of the treatment on subscription rate stabilizes fairly quickly post-
treatment. The number of hours spent on the platform reacts negatively to ad load.
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Table 4: Change in monthly active users, subscription rate, and ad-supported hours relative
to the control condition across different treatment arms.

Dependent variable:

Active users Subscription rate Ad-supported hours

(1) (2) (3)

Control (Baseline) 100.000∗∗∗ 100.000∗∗∗ 100.000∗∗∗

(0.076) (0.735) (0.206)

3x1 0.138 −6.197∗∗∗ 1.530∗∗∗

(0.107) (1.039) (0.291)

4x2 −0.078 2.234∗∗ −0.713∗∗∗

(0.093) (0.900) (0.252)

4x3 −0.224∗ 7.992∗∗∗ −1.732∗∗∗

(0.132) (1.273) (0.357)

6x2 −0.362∗∗∗ 11.212∗∗∗ −2.198∗∗∗

(0.132) (1.274) (0.357)

5x3 −0.340∗∗∗ 15.482∗∗∗ −2.839∗∗∗

(0.132) (1.272) (0.357)

6x3 −0.527∗∗∗ 17.984∗∗∗ −3.854∗∗∗

(0.158) (1.529) (0.429)

Observations 7,350,278 7,350,278 7,350,278
R2 0.00000 0.0001 0.00004
Adjusted R2 0.00000 0.0001 0.00004
Residual Std. Error (df = 7350271) 85.530 827.142 231.912

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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supported version, or paying for the subscription service. Also note the profit structure

depends on listeners’ subscription state. Although the profits generated by a paid subscriber

are not a function of consumption intensity, the profits from an ad-supported user are a

direct function of hours consumed and the realized ad load. In the following subsections, we

first estimate a discrete-choice demand model where consumers choose between the outside

option, ad-supported, and paid subscription. Then, conditional on being an ad-supported

user, the number of hours consumed in a given period is estimated. Finally, as illustrated in

section 3, the realized ad load depends on both the treatment condition and demand from

advertisers. Hence, we construct a third model to account for the the partial control problem

discussed in section 3. Combining these models enables us to optimize profits and study the

welfare implications of personalizing ad load.

5.1 Demand model

We estimate a nested logit model to reflect users’ decision between two nests of options,

namely, a degenerate nest that includes the outside option and another nest where the user

decides between the ad-supported and paid versions. Consider the following discrete-choice

demand model:

u(τ ; x) = max



ε0 outside option,

θ(x) +
∑
j

ηj(x)1{τ=ej}︸ ︷︷ ︸
v1(x,τ )

+ εa ad-supported,

γ(x)︸ ︷︷ ︸
v2(x)

+ εp paid version,

(4)

where x is a user-specific vector that includes exogenous and pre-experimental endogenous

features at the listener level. The utility of consuming the outside option is normalized

to zero, and the net utility of consuming the ad-supported and paid product in the control
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condition is captured by θ(x), and γ(x), respectively. This net utility consists of consumption

utility and the disutility caused by ads and payment. One can impose further restrictions to

disentangle these parts; however, our goal is to impose as few assumptions as possible. The

experiment only affects the ad load across different conditions; therefore, the treatment effect

only enters the utility of ad-supported product through ηj(x). The treatment condition is

represented by a binary vector τ , and ej is a unit vector whose jth element is equal to 1.

The treatment effect of condition j is denoted by ηj(x), which measures the change in utility

of consumption for each treatment arm relative to the control condition. Finally, (ε0, εa, εp)

follows a generalized extreme value (GEV) distribution that allows us to estimate a nested-

logit model, where the probability of each option is as follows:

P(Y = outside, ad-supported, paid|τ ; x) =



1
1+exp(λ.IV )

,
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where v1(x, τ ), and v2(x) are defined as in equation (4). Also, IV = log

(
exp

(
v1(x,τ )

λ

)
+ exp

(
v2(x)
λ

))
is the inclusive value of the nest, and 1 − λ ∈ [0, 1] reflects the correlation structure inside

the nest.

Functions γ(x), θ(x), and ηj(x) are parameterized as neural networks, which allows

them to be represented as flexible functional forms of pre-treatment features. Note that a

neural network with a terminal softmax activation layer is effectively a flexible logit, and

by restricting the values fed to the terminal layer, we can create flexible structural models.

Because we are estimating a nested logit model instead of a simple logit one, we need to

change the terminal layer of the neural network to reflect the probability structure imposed by

the nested logit with a tunable parameter λ. We impose a few restrictions on the structure on
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the neural network. First, treatment dummies only enter the last layer of the neural network

and are multiplied by coefficients ηi(x) that are also parameterized as neural networks. This

technique forces12 the neural network to use the information provided by treatment dummies

and has been used in Shalit et al. (2017) and Farrell et al. (2018). Second, because features

that may explain heterogeneity in treatment ηi(x) may be very different from those that

explain the cross-sectional heterogeneity (θ(x) and γ(x)), we use split neural networks (Kim

et al. 2017) to separately fit values to each part. In particular, we let the network that learns

ηj(x), that is the “treatment effect,” be disjoint from the network that learns θ(x) and

γ(x), that is the utility from consuming the ad-supported product. Split neural networks

have been mainly used for parallel computing and to boost the training process. In this

application, however, the issue is that the heterogeneity in the treatment effect may be

explained by different types of features that would explain the cross-sectional heterogeneity,

and these exclusion restrictions help the network to learn treatment heterogeneity more

efficiently. Note that even though we impose a split structure, the networks are trained

jointly. A schematic view of the architecture is presented in Figure 9. Note the purple part

that learns θ(x), and γ(x) is separate from the green part, which is responsible for explaining

the variation caused by the treatment (ηi(x)). Furthermore, change in the ad load affects

only the utility of consuming the ad-supported version.

To train this model, we minimize a weighted negative log-likelihood function similar

to Shalit et al. (2017), which jointly optimizes for the treatment effect τ (.) and parameters

that explain cross-sectional variation θ(.) and γ(.):

minimize
θ,γ,η,λ

1

N

∑
i

wiL (h(θ(xi), γ(xi), η(xi)), yi;λ) , (5)

12Note the treatment effect tends to be very small, and if the treatment dummies are inserted in the
input layer along with other features, they may get regularized out by the network. The fact that we use a
number of shared layers to construct ηj(x) and then spread into separate heads forces the model to use the
information provided by treatment dummies and improves the statistical power of our algorithm; see Shalit
et al. (2017) for more details.
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where L(., .) is the negative log-likelihood for the nested-logit model, θ(.), γ(.), and η(.) are

functions parameterized by the neural networks. Finally, N is the total number of users, and

wi is an inverse propensity score for each treatment condition that is equal to N∑N
n=1

1{τn=ei}
.

Note that inverse probability weighting is often used to address selection issues; however,

our goal is to balance different treatment conditions. For instance, if, by design, the size

of one treatment cell is significantly larger than another cell, the optimization problem will

have more incentive to fit the data to improve its prediction power for the larger cell. For

instance, if a treatment group is twice as large as another treatment group, the same type

of error is penalized twice for the larger treatment cell relative to the smaller one. However,

our goal is to better learn the differences across treatment cells, and this weighting balances

the prediction power across different counterfactual scenarios (Shalit et al. 2017).
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Figure 9: A schematic view of the split neural network architecture used for demand esti-
mation. The purple and green parts of the network are separate. Also note that treatment
dummies enter right before the last layer. This restriction imposes structure on the network
and forces it to learn the relationship between the output and ad load even though the
amount of variation explained by the treatment dummies could be very small. Furthermore,
the split structure of the network allows it to separately learn features that could explain
the treatment effect ηi(x) from other constructs that explain cross-sectional differences, that
is θ(x) and γ(x).

5.2 Intensive margin

A change in ad load not only affects the extensive margin of consumption and the choice

across different products within the product line, but also affects the intensive margin of

consumption, that is hours spent listening to music conditional on being an ad-supported

listener. Consider the following model:

log(Y) = α(x) +
∑
j

νj(x)1{τ=ej} + ε, (6)
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where Y is the number of hours consumed conditional on being an active ad-supported user,

α(x) represents the conditional expectation of log(Y) in the control condition, and the νi(x)

aim to capture the conditional average treatment effect on ad-supported hours. Finally, x

is a set of exogenous and user-generated features collected during the pre-treatment period,

and ε is a random variable with a Normal distribution.

To estimate this model, we again resort to a split neural network model, where one

split learns α(x) and the other one fits νi(x). Note α(x) and νi(x) are estimated jointly;

however, the networks that estimate them do not share weights and are allowed to have

different parameters similar to the architecture presented in Figure 9. This model is learned

by optimizing a weighted `2 loss counterpart of (5).

5.3 Partial control over realized treatment

Apart from the control condition, we have six treatment conditions, namely, 3x1, 4x2, 6x2,

4x3, 5x3, and 6x3. As demonstrated in Figure 6, the realized ad load is not necessarily

equal to the intended ad load. In other words, the experiments only shift the ad capacity,

which is the number of opportunities to show ads to each listener; however, the realized ad

load depends on the advertisers’ interest in different demographics. Therefore, the treatment

depends on both the firm’s actions and the advertisers’ demand, and it needs to be accounted

for in our optimization problem for reallocating ads. To that end, we estimate a model similar

to that in section 5.2, with Y being the realized ad load conditional on being an ad-supported

listener. The rest of the parameters and the estimation procedure are similar to section 5.2.

6 Heterogeneous Treatment Effects

In this section, we demonstrate that the models described in section 5 are able to sort users

based on the magnitude of the treatment effect. Before proceeding, we discuss the training
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process and introduce some notation. To train the models, we randomly divided the data

set into halves. We study user outcomes in the first four weeks of December 2016, that is six

months after the treatment began. We train and validate the models on one half of the data,

and we use the other for evaluating the performance of the model in terms of improving

profits. In this section, we show our models are able to sort users based on the treatment

magnitude in the hold-out sample.

Let x be the set of pre-treatment outcomes and user features used for describing each

individual. Also as before, let τ represent each of the seven ad-load conditions. Note that in

the experiment, each listener can participate in only one of the treatment cells. The models

introduced in section 5 enable us to predict user outcomes across “counterfactual” ad-load

conditions. We built three sets of models, and we use the following notation to refer to them:

• Extensive margin: Let P0(x, τ ), Pa(x, τ ), and Ps(x, τ ) denote the conditional prob-

ability of choosing the outside option, ad-supported service, and the paid subscription

as a function of pre-treatment user features x and treatment condition τ . These con-

ditional probabilities are the output from the estimated models in section 5.1.

• Intensive margin: Let C(x, τ ) be the expectation of the number of ad-supported

hours consumed in a given period conditional on being an ad-supported user. C(x, τ )

would be the output of the model discussed in section 5.2.

• Realized treatment: Let A(x, τ ) be the conditional expectation of the realized ad

load (number of ads per hour). A(x, τ ) is the output of the machine learning model

discussed in section 5.3.

To demonstrate the effectiveness of our approach, we show our models are able to detect

heterogeneous treatment effects in terms of change in ad-supported hours and switching

to the subscription service. We first calculate the conditional average treatment effect on
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ad-supported hours for each condition relative to the control condition as:

ζ(xi, ej) = Pa(xi, ej)C(xi, ej)− Pa(xi, e0)C(xi, e0), (7)

where Ps(xi, ej) and C(xi, ej) are the predicted probability of user i being an active ad-

supported user when exposed to treatment condition j, and the number of hours consumed

conditional on being an active ad-supported user, respectively. Pa(xi, e0), and C(xi, e0) are

defined similarly for the control condition, and e0 is a vector of all zeros.

The histogram of ζ(xi, ej) for each of the six treatment conditions is plotted in Figure 10.

As mentioned above, the control condition is basically the same as the 4x2 condition, with

the only difference being that the first ad pod within the session is constrained to be of length

one. Therefore, the only condition with fewer ads relative to control is 3x1 and the model

has correctly predicted a positive effect for the majority of users in that arm. Similarly for

the rest of the arms, with higher ad load relative to control, the treatment effect is negative

for the majority of users.
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Figure 10: The histogram of predicted change in ad-supported hours for each treatment arm
relative to control in the hold-out sample. The x-axis is limited to be between -2 to 2 for
aesthetics purposes. The median treatment effect across each condition is represented by
the dashed line, and the solid red line represents zero.

To demonstrate that the predicted heterogeneity is indeed correlated with the realized

change in ad-supported hours, we break users in the hold-out sample into five quintiles based

on the predicted treatment effect for the 6x3 condition13. Then, we compare the treatment

effect of the 6x3 condition relative to control across these quintiles. The results are presented

in Figure 11 and show the model is indeed able to sort users based on their ad sensitivity.

In particular, the negative effect on ad-supported hours in the first quintile is twice as large

as that of the second quintile.

13Recall that the 6x3 condition is the most extreme treatment condition in our experiment with the largest
treatment effect.
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Figure 11: Realized change in ad-supported hours for different predicted treatment quintiles
in the hold-out sample.

We repeat this analysis to illustrate the impact of changing ad load on subscription

propensity. In particular, we measure the conditional average treatment effect on subscrip-

tion propensity relative to the control condition as:

ξ(xi, ej) = Ps(xi, ej)− Ps(xi, e0),

where xi, ej, and Ps(., .) are defined as before. The histogram of predicted change in the

propensity of subscription across individuals is plotted in Figure 12. As expected, higher ad

load tends to increase subscription propensity. We also plot the realized lift in subscription

propensity in the 6x3 condition relative to control as a function of the predicted treatment

effect quintile in Figure 13. Figure 13 confirms the model was indeed successful in learning

the heterogeneity of the effect on subscription propensity. Interestingly, the lift for the lowest
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quintile is centered around zero, which means the model has identified customer segments

who are very unlikely to subscribe even when facing higher ad load. Note the model used

for making these prediction, that is sorting users into five group, was not trained on the

hold-out sample, and this prediction power on the hold-out sample demonstrates that the

model was able to learn meaningful patterns that generalize beyond the training set.

Figure 12: The histogram of predicted change in subscription propensity for each treatment
arm relative to control in the hold-out sample. The x-axis is limited to be between -0.03 to
0.03 for aesthetics purposes. The median treatment effect across each condition is represented
by the black dashed line, and the solid red line represents zero.
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Figure 13: Realized lift in subscription propensity as a function of predicted treatment effect
quintile on the hold-out sample.

7 Optimizing profits

To personalize the ad load, one needs to leverage the heterogeneity both in terms of sub-

stitution to the subscription service and intensive and extensive margin adjustments to ad-

supported hours, which determine the profits from selling ads. To that end, we use the sets

of models presented in section 5, namely, a discrete-choice model that reflects the user’s deci-

sion between the outside option, ad-supported consumption, and the subscription service, a

model that determines the number of hours consumed conditional on using the ad-supported
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service, and a model that estimates the realized ad load across different treatment conditions.

Throughout this section, we rely on the notation developed in section 6.

The firm’s optimization problem is to maximize profits holding the total ad inventory

fixed.14 If the ad inventory is held fixed, this optimization problem then translates to max-

imizing profits from subscriptions while serving the same number of ads to the overall user

base:

maximize
τ

∑
i

msPs(xi, τ i) (8)

∑
i

Pa(xi, τ i)C(xi, τ i)A(xi, τ i) = Γ,

where i indexes users, and ms is the margin from subscriptions. The objective function is the

expected profits from subscriptions across all users. Γ is the total number of ads available in

the inventory, and the constraint ensures all the ads in the inventory are served. The problem

assigns each user to one of the six treatment conditions or control group to maximize profits

while selling Γ ads. In other words, τ i is a binary vector that takes one of the seven values

{e0, e1, . . . , e6}, where e0 is the vector of all zeros, and ei is a unit vector whose ith element

is non-zero. This discrete optimization problem aims at assigning each user to one of the

seven conditions, that is 7N different combinations in total.

The functions above are constructed using the estimates of models developed in section 5.

For instance, note Ps(x, τ ) = exp(λ.IV )
1+exp(λ.IV )

exp
Ä
v2(x)

λ

ä
exp
Ä
v1(x,τ)

λ

ä
+exp
Ä
v2(x)

λ

ä , where v1(x, τ ), v2(x), and λ

are estimated parameters from the model described in section 5.1. The rest of the functions

are also outputs from estimated models presented in section 5. Note (8) is a discrete non-

14The overall problem is more complex than this. Note that the firm can change the price of ad impressions
and that would affect its ad inventory size. Unfortunately, we do not observe the closing price of those
contracts. However, even with a fixed ad inventory, the firm faces an implicit pricing problem that involves
allocating ads across individuals. We show the gains to personalizing this implicit price across different
inventory levels.
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convex optimization problem with a non-convex constraint, and even finding a local optimum

is NP-Hard for general continuous non-convex problems in the worst case (Murty and Kabadi

1985). In its current form, the problem is intractable. To approach it, we use the Lagrangian

relaxation of (8), which yields

maximize
τ

∑
i

msPs(xi, τ i) + λ(Γ)

(∑
i

Pa(xi, τ i)C(xi, τ i)A(xi, τ i)

)
, (9)

where λ(Γ) is the marginal impact of ads on subscriptions. Different values of λ(Γ) lead to

different ad inventory sizes. Note that given λ(Γ), the problem can now be decoupled across

users:

∑
i

maximize
τ i

msPs(xi, τ i) + λ(Γ) (Pa(xi, τ i)C(xi, τ i)A(xi, τ i))︸ ︷︷ ︸
f(xi,λ(Γ),τ i)

, (10)

which is simply equivalent to evaluating f(xi, λ(Γ), τ i) for each user i across different treat-

ment conditions and choosing the maximum.

Given λ, the complexity of problem (10) is O(N) compared to O(7N) for (8). Note the

shadow price λ(Γ) corresponding to each value of Γ is not a priori known and one needs to

resolve problem (8) for different shadow-price values λ to find the corresponding ad inventory

level Γ. However, this task can be done easily with binary search techniques.

To evaluate the performance of our personalization policy, we follow a procedure similar

to Hitsch and Misra (2018), Yoganarasimhan et al. (2020). However, our problem is more

nuanced than Hitsch and Misra (2018), Yoganarasimhan et al. (2020). In particular, the

treatment exposure itself not only depends on treatment assignment, but is also a function

of user state, that is ad-supported or subscriber, the amount of consumption, and advertisers’

demand. Therefore, we construct an inverse probability weighted estimator for realized ad

load and profits from the subscription service:
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Π̂(A) =
1

N

N∑
i=1

6∑
j=0

wj1{τ i=ej}1{A(i)=ej}πi, (11)

where wj = N∑N
i=1 1{τ i=ej}

is the inverse propensity for each treatment condition and is a

fixed number for each of the seven treatment conditions because we have a randomized

control trial. The randomized treatment assignment for user i is denoted by τ i, and A is

an assignment function that assigns each user i to one of the treatment conditions. Our

goal is to evaluate the performance of an assignment rule A that is created by solving (10).

The product of the two indicator functions in (11) filters out observations for which the

assignment rule A and the randomized treatment τ i coincide. Finally, πi is an outcome of

interest for user i, for example subscription status or number of ads received. Equation (11)

then provides a consistent estimator of expectation of πi under a given assignment rule A.

To illustrate gains to personalizing ad load, we vary λ(Γ) and solve (10) for users in the

hold-out sample to get an assignment rule Aλ. Then, we evaluate the average number of ads

realized under the assignment rule Aλ and the expected profits from the subscription service

under this assignment rule using (11). Essentially, for each λ, we get a point on the 2D plane

whose x coordinate is the average number of ads realized, and its y coordinate is the expected

profits from subscriptions across individuals. We vary the shadow price λ to generate points

across the Pareto frontier. The results are plotted in Figure 14. Each purple dot in Figure 14

reflects the performance of an assignment rule for different values of λ, which translates to

different levels of ads served on the platform. Each pink dot represents the performance of a

personalized ad-allocation strategy. Our agreement with Pandora prevents us from sharing

the actual numbers in dollar terms, and the performance has been reported relative to the

control condition. Note the personalized counterpart of the control condition, that is the

pink dot with the same x coordinate as control, leads to the same number of subscribers as

in the 6x2 and 4x3 conditions. Therefore, if the firm’s goal was to achieve the same number
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of subscribers using a uniform ad-load strategy, it would have to increase its ad load by more

than 30%.

Figure 14: Change in subscription profits as a function of number of ads served. Each pink
dot represents the performance of a personalized assignment rule. Holding fixed the number
of ads served, the personalized assignment strategy dominates uniform ad-load strategies
that the firm experimented with.

So far, we have examined the gains from personalization after a six-month period. To find

the minimum time required for such gains to materialize, we compare the control condition

with its personalized counterpart throughout time. Note (11) provides a consistent estimator

of any outcome of interest in any given week. Figure 15 compares the 6x3 and 3x1 conditions,

and the personalized counterpart of the control condition relative to the control; that is each

outcome of interest is measured relative to control. The results demonstrate that the control

and its counterpart lead to similar ad load. However, the counterpart increases the Plus

subscription rate by 10%. Whereas the impact on subscriptions manifests within three

months after personalizing the ad load, the effect on all and ad-supported hours in the same

time period seems to be negligible. This finding indicates a dynamic optimization model
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may be beneficial here. However, due to the nature of our experiments, we cannot evaluate

the benefits to dynamic implicit pricing using the randomization.

Figure 15: The effect of personalization throughout time. The top-left panel shows the per-
sonalized counterpart of the control condition is delivering approximately the same amount
of ads as control, whereas the 6x3 condition is delivering 60% more ads relative to control.
The top-right figure shows the personalized counterpart increases the number of subscribers
by 10%, and this gain is expected to materialize within three months of implementing this
policy. Note the impact on ad-supported hours or all hours within three months of imple-
mentation seems to be negligible.

We now illustrate the underlying mechanism that enables the algorithm to improve the

firm’s profits. Pandora offers two types of products: the subscription service (high-tier) and

the ad-supported (low-tier) product. When the menu of products cannot be personalized,

the problem is similar to the one discussed in Mussa and Rosen (1978) and Deneckere

and Preston McAfee (1996). In the absence of personalization, the seller has the incentive

to lower the quality of the low-tier product for everybody to make adopting the high-tier

product worthwhile for those who have higher willingness to pay. However, personalizing ad
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load limits the distortion to high willingness to pay customers, and the “implicit price” for

other segments falls (quality improves) at the expense of this segment.

8 Distribution of Welfare

As we mentioned before, the welfare implications of personalizing ad load are a priori am-

biguous due to possible correlation between willingness to pay in time and money units.

For instance, whether higher-income users would be assigned to higher or lower-ad-load con-

ditions would be unclear, whereas in a single-product pricing problem, one would expect

low-income users to face lower prices because they are more price sensitive. To examine the

proposed policy, we compare the allocation of ads in the control condition with its person-

alized counterpart, that is the personalized assignment rule that serves the same number of

ads as the control condition. Note the optimization problem assigns each user to one of the

seven conditions, and the only experiment arm that has lower ad load than control is the 3x1

condition. The propensity of being assigned to the lower-ad-load condition, that is higher

quality of service for the ad-supported product, tends to be monotonically increasing as a

function of zip code income and decreasing as a function of age; see Figure 16. Both younger

individuals and those residing in lower-income zip codes tend to be more price sensitive,

and if the algorithm were to charge prices in dollar amounts, it would likely charge them

a lower price. In our case, the company is following a uniform pricing scheme for the paid

service; however, our personalization algorithm induces wealthier individuals to upgrade to

the paid service by personalizing the ad load of the ad-supported product, and provides a

better quality of service to other demographic groups.

We now illustrate the impact of our ad-allocation algorithm on consumer welfare by

comparing the control condition with its personalized counterpart, that is the personalized

algorithm that delivers the same overall number of ads. The overall utility for an individual

44



Personalized Versioning

(a)

(b)

Figure 16: Probability of assignment to lower ad load than control as a function of price
sensitivity. Note the total number of ads for this assignment was set to be equal to the
control condition, and those assigned to the 3x1 condition are effectively receiving higher
quality of service on the ad-supported product. (a) Users from lower-income zip codes tend
to be more likely to receive an ad-load “discount.” (b) Older users tend to be less likely to
receive a discount. The algorithm seems to be adjusting the quality of service for users who
have higher willingness to pay to make converting incentive compatible for them.
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with features x who is assigned to treatment condition τ is equal to:

U(x, τ ) = log

Ç
1 +

ï
exp(

v1

λ
) + exp(

v2

λ
)
òλå

, (12)

where v1 and v2 are the utilities associated with the ad-supported, and paid-subscription

products, respectively. Recall that v1 and v2 are functions of x and τ and were defined

in (4). To study the impact of our personalization model on consumer surplus, we can

compare the percentage change in the utility of users in the control condition relative to its

personalized counterpart. In particular, we examine the following construct:

∆UA = 100× U(x,A(x))− U(x, control)

U(x, control)
,

where A(x) denotes the assignment rule that is the personalized counterpart of the control

condition. The distribution of ∆UA is plotted in Figure 17. On average, consumer utility

drops by -2% and utility improves for 41.2% of users.

We now illustrate the impact of this policy on users from different age and income groups

in Figure 18. The results demonstrate the loss in consumer utility is more pronounced for

older users and those from higher-income zip codes. This observation is consistent with our

prior findings in Figure 16 that showed younger users and those from lower-income zip codes

tend to be more likely to be assigned to lower-ad-load conditions.

9 Discussion and Conclusions

The advent of big data and large-scale data-processing technologies has allowed firms to

optimize services, ads, and prices at the individual level. Although a large body of literature

has focused on the implications of personalized pricing, the impact of personalizing the

product itself is overlooked. The public perceives price discrimination to be unfair and
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Figure 17: The impact of ad-load personalization on consumer welfare. The figure compares
the percentage change in consumer utility across the control condition and its personalized
counterpart. On average, personalizing ad load lowers consumer utility by 2%.

companies have largely avoided such practices fearing a consumer backlash. Given these

limitations, whether big data is going to be employed for personalizing pricing or versioning

instead is still unclear. To the best of our knowledge, this study is the first empirical paper

to investigate returns to personalized product versioning.

Although advertising can be used as an instrument to implement versioning for many

content providers, including YouTube, Spotify, or Pandora, the idea of personalized version-

ing applies more broadly to other freemium business models. We provide two such examples

here. First, in the online newspaper industry, the number of free pages or the amount of free

content available to users can be used for versioning. Second, among cloud storage services,

consider Dropbox’s free plan, which offers 2GBs of free storage to users. However, users may

be eligible for a wide variety of free storage promotions, including student discounts or offers

available to users who purchase HP or Samsung devices (Martinez 2014). We are not sure
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(a)

(b)

Figure 18: The average percentage change in consumer utility. The impact of the policy
across (a) different income levels and (b) users of different age.
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how targeted these strategies are, but the amount of free space offered to users on Dropbox

is surely not uniform. We are not aware if companies have used these features to experi-

ment with targeted versioning strategies, but as big data and experiments gain popularity,

personalized versioning strategies may become an alternative to personalized pricing.

Our field experiments at Pandora present a unique opportunity to study the impact

of personalized versioning in a product line. The availability of large-scale pre-treatment

features allows us to segment users and prescribe personalized ad schedules. Our study

highlights the importance of conducting field experiments and data-collection efforts for

designing reliable prescriptive strategies. We also highlight challenges that take place in

causal inference in two-sided platforms including partial control over realized outcomes or

treatment exposure. The fact that Pandora has allowed us to share the details of their

experiments and analyze the data to evaluate counter-factual strategies15 is unfortunately

an exception in the industry, not a norm. We hope that efforts by firms such as Pandora,

Yahoo, eBay, and Ziprecruiter (Lewis and Reiley 2014, Blake et al. 2015, Dubé and Misra

2017) promote transparency of firm-sponsored research.

Our results show that to achieve the same level of subscribers in the absence of a per-

sonalized ad-scheduling strategy, the firm needs to increase its ad load by more than 30%.

This finding shows personalization can both improve firm profits and the average quality of

service. We also find that gains from ad-load personalization materialize quickly. In par-

ticular, within three months of implementing the personalized counterpart of the control

condition, the profits from subscriptions increase by 10%. Interestingly, the short-term im-

pact of this strategy on the overall consumption of ad-supported service is negligible. This

finding, combined with switching costs between products, presents an opportunity for firms

to investigate returns to dynamic optimization of implicit prices. Although some evidence

15The personalized versioning algorithm developed in this paper is not adopted by Pandora and we used
inverse probability weighting to evaluate its performance using the randomization in the data.
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shows firms change their quality of service in time due to demand seasonality (Lambrecht

and Misra 2017), we believe studying the trade-offs between personalized and time-varying

quality of service adjustments is a fruitful area for future research. Finally, changing ad load

could affect the click-through rate of ads or, in general, their effectiveness. This effect adds

an additional layer of complexity for platforms that are compensated based on conversions

or click-through rates. Although studying how ad effectiveness changes as a function of the

number of ads in online platforms is beyond the scope of this paper, we acknowledge it could

play an important role in the firm’s decision to adopt the personalization algorithm discussed

here.
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